Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex.

Cell

Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Published: March 2000

Sorting signals on cargo proteins are recognized by coatomer for selective uptake into COPI (coatomer)-coated vesicles. This study shows that coatomer couples sorting signal recognition to the GTP hydrolysis reaction on ARF1. Coatomer responds differently to different signals. The cytoplasmic signal sequence of hp24a inhibits coatomer-dependent GTP hydrolysis. By contrast, the dilysine retrieval signal, which competes for the same binding site on coatomer, has no effect on GTPase activity. It is inferred that, in vivo, sorting signal selection is under kinetic control, with coatomer governing a GTPase discard pathway that excludes dilysine-tagged proteins from one class of COPI-coated vesicles. The concept of competing sets of sorting signals that act positively and negatively during vesicle budding through a GTPase switch in the COPI coat complex suggests mechanisms for cargo segregation in which specificity is conferred by GTP hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(00)80703-5DOI Listing

Publication Analysis

Top Keywords

sorting signals
12
gtp hydrolysis
12
coatomer gtpase
8
gtpase switch
8
switch copi
8
copi coat
8
coat complex
8
sorting signal
8
coatomer
6
decoding sorting
4

Similar Publications

Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.

Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

Obesity is a risk factor for asthma morbidity, associated with less responsiveness to inhaled corticosteroids. CD4+ T-cells are central to the immunology of asthma and may contribute to the unique obese asthma phenotype. We sought to characterize the single cell CD4+ Transcriptional profile differences in obese children with asthma compared to normal weight children with asthma.

View Article and Find Full Text PDF

Sorting Out the SOCS Genes and Their Role in Macrophage Activation.

J Interferon Cytokine Res

January 2025

Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.

The suppressors of cytokine signaling (SOCS) genes were first described in a group of articles published in 1997. Since that time, much has been learned about the functional activities mediated by the corresponding proteins encoded by the SOCS genes. The SOCS gene family contains eight members: through and a highly related gene known as (cytokine-inducible SH2-containing protein).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!