Previously, we have identified and characterized nuclear AKAP95 from man which targets cyclic AMP (cAMP)-dependent protein kinase (PKA)-type II to the condensed chromatin/spindle region at mitosis. Here we report the cloning of a novel nuclear protein with an apparent molecular mass of 95 kDa that is similar to AKAP95 and is designated HA95 (homologous to AKAP95). HA95 cDNA sequence encodes a protein of 646 amino acids that shows 61% homology to the deduced amino acid sequence of AKAP95. The HA95 gene is located on chromosome 19p13.1 immediately upstream of the AKAP95 gene. Both HA95 and AKAP95 genes contain 14 exons encoding similar regions of the respective proteins, indicating a previous gene duplication event as the origin of the two tandem genes. Despite their apparent similarity, HA95 does not bind RII in vitro. HA95 contains a putative nuclear localization signal in its N-terminal domain. It is localized exclusively into the nucleus as demonstrated in cells transfected with HA95 fused to either green fluorescence protein or the c-myc epitope. In the nucleus, the HA95 protein is found as complexes directly associated with each other or indirectly associated via other nuclear proteins. In interphase, HA95 is co-localized with AKAP95, but the two proteins are not biochemically associated. At metaphase, both proteins co-localize with condensed chromosomes. The similarity in sequence and localization of HA95 and AKAP95 suggests that the two molecules constitute a novel family of nuclear proteins that may exhibit related functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0248-4900(00)88761-4DOI Listing

Publication Analysis

Top Keywords

ha95
11
novel nuclear
8
nuclear protein
8
ha95 homologous
8
akap95
8
akap95 ha95
8
ha95 akap95
8
nuclear proteins
8
protein
7
nuclear
6

Similar Publications

Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry.

J Proteome Res

June 2008

Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.

Epstein-Barr virus nuclear antigen 5 (EBNA5) is one of the first viral proteins detected after primary EBV infection and has been shown to be required for efficient transformation of B lymphocytes. EBNA5 is a protein that has many suggested functions but the underlying biology remains to be clarified. To gain further insight into the biological roles of the proposed multifunctional EBNA5, we isolated EBNA5 containing protein complexes using a modified tandem affinity purification (TAP) method and identified the protein components by LC-MS/MS analysis of tryptic digests on a LTQ-FT-ICR mass spectrometer.

View Article and Find Full Text PDF

Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus.

View Article and Find Full Text PDF

A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity.

Genes Dev

September 2006

Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.

Histone deacetylase (HDAC) inhibitors perturb the cell cycle and have great potential as anti-cancer agents, but their mechanism of action is not well established. HDACs classically function as repressors of gene expression, tethered to sequence-specific transcription factors. Here we report that HDAC3 is a critical, transcription-independent regulator of mitosis.

View Article and Find Full Text PDF

In vitro modulation of the interaction between HA95 and LAP2beta by cAMP signaling.

Biochemistry

September 2003

Institute of Medical Biochemistry, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway.

The nuclear envelope mediates key functions by interacting with chromatin. We recently reported an interaction between the chromatin- and nuclear matrix-associated protein HA95 and the inner nuclear membrane integral protein LAP2beta, implicated in initiation of DNA replication (Martins et al. (2003) J.

View Article and Find Full Text PDF

HA95 is a chromatin-associated protein that interfaces the nuclear envelope (NE) and chromatin. We report an interaction between HA95 and the inner nuclear membrane protein lamina-associated polypeptide (LAP) 2 beta, and a role of this association in initiation of DNA replication. Precipitation of GST-LAP2 beta fusion proteins and overlays of immobilized HA95 indicate that a first HA95-binding region lies within amino acids 137-242 of LAP2 beta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!