A strictly anaerobic, H2-utilizing bacterium, strain SL1, was isolated from the sediment of an acidic coal mine pond. Cells of strain SL1 were sporulating, motile, long rods with a multilayer cell wall. Growth was observed at 5-35 degrees C and pH 3.9-7.0. Acetate was the sole end product of H2 utilization and was produced in stoichiometries indicative of an acetyl-CoA-pathway-dependent metabolism. Growth and substrate utilization also occurred with CO/CO2, vanillate, syringate, ferulate, ethanol, propanol, 1-butanol, glycerine, cellobiose, glucose, fructose, mannose, xylose, formate, lactate, pyruvate and gluconate. With most substrates, acetate was the main or sole product formed. Growth in the presence of H2/CO2 or CO/CO2 was difficult to maintain in laboratory cultures. Methoxyl, carboxyl and acrylate groups of various aromatic compounds were O-demethylated, decarboxylated and reduced, respectively. Small amounts of butyrate were produced during the fermentation of sugars. The acrylate group of ferulate was reduced. Nitrate, sulfate, thiosulfate, dimethylsulfoxide and Fe(III) were not utilized as electron acceptors. Analysis of the 16S rRNA gene sequence of strain SL1 demonstrated that it is closely related to Clostridium scatologenes (99.6% sequence similarity), an organism characterized as a fermentative anaerobe but not previously shown to be capable of acetogenic growth. Comparative experiments with C. scatologenes DSM 757T demonstrated that it utilized H2/CO2 (negligible growth), CO/CO2 (negligible growth), formate, ethanol and aromatic compounds according to stoichiometries indicative of the acetyl-CoA pathway. CO dehydrogenase, formate dehydrogenase and hydrogenase activities were present in both strain SL1 and C. scatologenes DSM 757T. These results indicate that (i) sediments of acidic coal mine ponds harbour acetogens and (ii) C. scatologenes is an acetogen that tends to lose its capacity to grow acetogenically under H2/CO2 or CO/CO2 after prolonged laboratory cultivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00207713-50-2-537 | DOI Listing |
ACS Appl Bio Mater
November 2024
School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand.
Biofilm formation on medical implants such as catheters is a major issue which needs to be addressed as it leads to severe health care associated infections. This study explored the design and synthesis of a polydopamine-lipopeptide based antimicrobial coating. The coating was used to modify the surface of Ultrathane Catheters.
View Article and Find Full Text PDFJ Med Virol
September 2024
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
Microb Cell Fact
July 2024
Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
Background: Acetogens, a diverse group of anaerobic autotrophic bacteria, are promising whole-cell biocatalysts that fix CO during their growth. However, because of energetic constraints, acetogens exhibit slow growth and the product spectrum is often limited to acetate. Enabling acetogens to form more valuable products such as volatile fatty acids during autotrophic growth is imperative for cementing their place in the future carbon neutral industry.
View Article and Find Full Text PDFBioresour Bioprocess
October 2023
Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia.
The energy crisis triggers the use of energy sources that are renewable, such as biomass made from lignocellulosic materials, to produce various chemical compounds for food ingredients and biofuel. The efficient conversion of lignocellulosic biomass into products with added value involves the activity of microorganisms, such as yeasts. For the conversion, microorganisms must be able to use various sugars in lignocellulosic biomass, including pentose sugars, especially xylose.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2024
School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
() is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!