A wide range of xenobiotic compounds are metabolized by cytochrome P450 (CYP) enzymes, and the genes that encode these enzymes are often induced in the presence of such compounds. Here, we show that the nuclear receptor CAR can recognize response elements present in the promoters of xenobiotic-responsive CYP genes, as well as other novel sites. CAR has previously been shown to be an apparently constitutive transactivator, and this constitutive activity is inhibited by androstanes acting as inverse agonists. As expected, the ability of CAR to transactivate the CYP promoter elements is blocked by the inhibitory inverse agonists. However, CAR transactivation is increased in the presence of 1,4-bis[2-(3, 5-dichloropyridyloxy)]benzene (TCPOBOP), the most potent known member of the phenobarbital-like class of CYP-inducing agents. Three independent lines of evidence demonstrate that TCPOBOP is an agonist ligand for CAR. The first is that TCPOBOP acts in a dose-dependent manner as a direct agonist to compete with the inhibitory effect of the inverse agonists. The second is that TCPOBOP acts directly to stimulate coactivator interaction with the CAR ligand binding domain, both in vitro and in vivo. The third is that mutations designed to block ligand binding block not only the inhibitory effect of the androstanes but also the stimulatory effect of TCPOBOP. Importantly, these mutations do not block the apparently constitutive transactivation by CAR, suggesting that this activity is truly ligand independent. Both its ability to target CYP genes and its activation by TCPOBOP demonstrate that CAR is a novel xenobiotic receptor that may contribute to the metabolic response to such compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC85552PMC
http://dx.doi.org/10.1128/MCB.20.9.2951-2958.2000DOI Listing

Publication Analysis

Top Keywords

inverse agonists
12
car
9
agonist ligand
8
nuclear receptor
8
receptor car
8
cyp genes
8
inhibitory inverse
8
tcpobop acts
8
ligand binding
8
tcpobop
6

Similar Publications

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered.

View Article and Find Full Text PDF

Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer.

Cancers (Basel)

January 2025

Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.

The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters.

View Article and Find Full Text PDF

GLP-1RA Use and Thyroid Cancer Risk.

JAMA Otolaryngol Head Neck Surg

January 2025

OptumLabs, Eden Prairie, Minnesota.

Importance: The increasing use of glucagon-like peptide-1 receptor agonists (GLP-1RA) demands a better understanding of their association with thyroid cancer.

Objective: To estimate the risk of incident thyroid cancer among adults with type 2 diabetes being treated with GLP-1RA vs other common glucose-lowering medications.

Design, Setting, And Participants: This was a prespecified secondary analysis of a target trial emulation of a comparative effectiveness study using claims data for enrollees in commercial, Medicare Advantage, and Medicare fee-for-service plans across the US.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!