Testing for random mating in human populations is difficult due to confounding factors such as ethnic preference and population stratification. With HLA, the high level of polymorphism is an additional problem since it is rare for couples to share the same haplotype. Focus on an ethnically homogeneous population, where levels of polymorphism at HLA loci are more limited, may provide the best situation in which to detect non-random mating. However, such populations are often genetic isolates where there may be inbreeding to an extent that is difficult to quantify and account for. We have developed a test for random mating at a multiallelic locus that is robust to stratification and inbreeding. This test relies on the availability of genotypic information from the parents of both spouses. The focus of the test is on families where there is allele sharing between the parents of both spouses, so that potential spouses could share an allele. Denoting the shared allele at the locus of interest by A, then under the assumption of random mating, heterozygous parents AX should transmit allele A equally as frequently as allele X to their offspring. When there is positive (negative) assortative mating, A will be transmitted more (less) often than X. The power of the test has been computed in a number of situations. Data on high resolution HLA haplotypes from the Hutterite population were reinvestigated by the proposed test. The test detects significant negative assortative mating when the parental origin of the shared haplotype is taken into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.ejhg.5200430 | DOI Listing |
R Soc Open Sci
January 2025
Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany.
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China. Electronic address:
Nat Hum Behav
December 2024
Leverhulme Centre for Demographic Science, Nuffield Department of Population Health and Nuffield College, University of Oxford, Oxford, UK.
Socioeconomic status (SES) impacts health and life-course outcomes. This genome-wide association study (GWAS) of sociologically informed occupational status measures (ISEI, SIOPS, CAMSIS) using the UK Biobank (N = 273,157) identified 106 independent single-nucleotide polymorphisms of which 8 are novel to the study of SES. Genetic correlations with educational attainment (r = 0.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Animal Ecology, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.
Species-specific sexual traits facilitate species-assortative mating by reducing mating across species and reducing hybrid sexual attractiveness. For learned sexual traits, such as song in oscine birds, species distinctiveness can be eroded when species co-occur. Transcriptional regulatory divergence in brain regions involved in sensory learning are hypothesized to maintain species distinctiveness, but relatively few studies have compared gene expression in relevant brain regions between closely related species.
View Article and Find Full Text PDFJ Evol Biol
December 2024
Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universit ätsstraÿe 25, 33615 Bielefeld, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!