After myocardial ischemia, circulating levels of the mitogen endothelin-1 (ET-1) increase. The effects of ET-1 on cardiac fibroblasts are poorly characterized. Therefore we examined the influence of ET-1 on cardiac fibroblast proliferation with a view to elucidating the signal transduction mechanisms underlying this effect. ET-1 (10 n m) stimulated [(3)H]thymidine incorporation and cell proliferation in cultured neonatal rat cardiac fibroblasts, consistent with its activity as a mitogen. We examined the role of protein kinase C (PKC) on this function. Inhibition of PKC activation with either chelerythrine (1 microm) or staurosporine (1 n m) attenuated ET-1-induced increases in DNA synthesis and cell number. Downregulation of PKC by chronic pretreatment with 10 n m phorbol 12-myristate 13-acetate (PMA) also prevented ET-1-induced mitogenesis. In contrast to previous reports that cardiac fibroblast proliferation stimulated by angiotensin II acts independently of PKC, the ET-1 mediated mitogenic effect requires activation of PKC in these cells. Findings in adult rat cardiac fibroblasts were identical. In addition, we noted that concurrent treatment with the pro-inflammatory cytokine interleukin 1 beta which, like ET-1, is released after myocardial ischemia, attenuated the ET-1-induced increases in DNA synthesis and cell number. This effect was not mediated through a nitric oxide synthase pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmcc.2000.1109 | DOI Listing |
Front Cardiovasc Med
January 2025
Department of Acupuncture, Bao'an Authentic TCM Therapy Hospital, Shenzheng, China.
Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases, such as myocardial infarction, myocardial ischemia, and sudden cardiac death. It is characterized by excessive proliferation and activation of fibroblasts, transformation into myofibroblasts, and, eventually, excessive deposition of the extracellular matrix, resulting in heart damage. Currently, modern drugs such as angiotensin-converting enzyme inhibitors, diuretics, and β-blockers can improve myocardial fibrosis in clinical treatment, but their therapeutic effect on this disease is limited, with obvious side effects and high cost.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.
Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.
Eur J Prev Cardiol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Chaoyang District, Beijing 100029, China.
Aims: Fibroblast growth factor 23 (FGF23) has been implicated in the occurrence of atrial fibrillation (AF), but its prognostic value in AF patients remains unclear.
Methods And Results: A total of 35 197 AF patients with available follow-up data (3.56, 0.
Iran J Basic Med Sci
January 2025
Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital Shanghai.
Objectives: Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.
Materials And Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction.
HGG Adv
January 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!