Fluorine-18 labeled 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(2-fluoroethyl)nort ropane (FECNT) was synthesized in the development of a dopamine transporter (DAT) imaging ligand for positron emission tomography (PET). The methods of radiolabeling and ligand synthesis of FECNT, and the results of the in vitro characterization and in vivo tissue distribution in rats and in vivo PET imaging in rhesus monkeys of [18F]FECNT are described. Fluorine-18 was introduced into 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(2-fluoroethyl)nort ropane (4) by preparation of 1-[18F]fluoro-2-tosyloxyethane (2) followed by alkylation of 2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane (3) in 21% radiochemical yield (decay corrected to end of bombardment [EOB]). Competition binding in cells stably expressing the transfected human DAT serotonin transporter (SERT) and norepinephrine transporter (NET) labeled by [3H]WIN 35428, [3H]citalopram, and [3H]nisoxetine, respectively, indicated the following order of DAT affinity: GBR 12909 > CIT >> 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(3-fluoropropyl) nortropane (FPCT) > FECNT. The affinity of FECNT for SERT and NET was 25- and 156-fold lower, respectively, than for DAT. Blocking studies were performed in rats with a series of transporter-specific agents and demonstrated that the brain uptake of [18F]FECNT was selective and specific for DAT-rich regions. PET brain imaging studies in monkeys demonstrated high [18F]FECNT uptake in the caudate and putamen that resulted in caudate-to-cerebellum and putamen-to-cerebellum ratios of 10.5 at 60 min. [18F]FECNT uptake in the caudate/putamen peaked in less than 75 min and exhibited higher caudate- and putamen-to-cerebellum ratios at transient equilibrium than reported for 11C-WIN 35,428, [11C]CIT/RTI-55, or [18F]beta-CIT-FP. Analysis of monkey arterial plasma samples using high performance liquid chromatography determined that there was no detectable formation of lipophilic radiolabeled metabolites capable of entering the brain. In equilibrium displacement experiments with CIT in rhesus monkeys, radioactivity in the putamen was displaced with an average half-time of 10.2 min. These results indicate that [18F]FECNT is a radioligand that is superior to 11C-WIN 35,428, [11C]CIT/RTI-55, [18F]beta-CIT-FP, and [18F]FPCT for mapping brain DAT in humans using PET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0969-8051(99)00080-3 | DOI Listing |
Calcif Tissue Int
January 2025
Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.
X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFNPJ Aging
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.
We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China.
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!