To evaluate the risk of gastrointestinal long-term aluminium (Al) exposure, aluminium distribution and the levels of the following essential elements: Ca, Mg, Zn, Cu, and Fe in tissue were studied. Aluminium was administered in drinking water as aluminium chloride, dihydroxyaluminium sodium carbonate or aluminium hydroxide. Mice (strain Pzh:SFIS) were exposed to a total dose of 700 mg Al in long-term treatment (for each Al compound n = 15). Concentrations of Al, Ca, Mg, Zn, Cu, and Fe in stomach, kidneys, bone and liver were analyzed by atomic absorption spectrometry. After AlCl3 treatment, aluminium was found to accumulate in all tested tissues. A significant decrease in Fe concentration in liver and Zn in kidneys was observed in comparison to concentrations of these elements in the control group. In the Al(OH)3-treated group, accumulation of aluminium was observed in bone only and decline of Fe concentration in stomach and Cu in liver and kidney. In the NaAl(OH)2CO3-treated group the increase in Al concentration was significant in bone; there was no change in concentration of essential elements in the examined tissues. The observed aluminium accumulation was not accompanied by changes in Ca and Mg concentration except for bone. This study showed that oral administration as a route of Al exposure can result in diverging accumulation of aluminium in tissues, the concentration depending on the chemical form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-0773.2000.d01-25.x | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:
Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States.
Objective: Extracting PICO elements-Participants, Intervention, Comparison, and Outcomes-from clinical trial literature is essential for clinical evidence retrieval, appraisal, and synthesis. Existing approaches do not distinguish the attributes of PICO entities. This study aims to develop a named entity recognition (NER) model to extract PICO entities with fine granularities.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.
View Article and Find Full Text PDFPLoS One
January 2025
University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: The study of women exposures and child outcomes occurring in the first 1,000 days of life since conception enhances understanding of the relationships between environmental factors, epigenetic changes, and disease development, extending beyond childhood and spanning the entire lifespan. Generation Gemelli is a recently launched case-control study that enrolls mother-newborns pairs in one of the largest university hospitals in Italy, in order to examine the association between maternal environmental exposures and intrauterine growth restriction (IUGR) and the risk of premature birth. The study will also evaluate the association of maternal exposures and the health and growth of infants and children up to 24 months of age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!