Cytochrome c folds through a smooth funnel.

Protein Sci

Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, San Antonio 78229-3900, USA.

Published: March 2000

A dominant feature of folding of cytochrome c is the presence of nonnative His-heme kinetic traps, which either pre-exist in the unfolded protein or are formed soon after initiation of folding. The kinetically trapped species can constitute the majority of folding species, and their breakdown limits the rate of folding to the native state. A temperature jump (T-jump) relaxation technique has been used to compare the unfolding/folding kinetics of yeast iso-2 cytochrome c and a genetically engineered double mutant that lacks His-heme kinetic traps, H33N,H39K iso-2. The results show that the thermodynamic properties of the transition states are very similar. A single relaxation time tau(obs) is observed for both proteins by absorbance changes at 287 nm, a measure of solvent exclusion from aromatic residues. At temperatures near Tm, the midpoint of the thermal unfolding transitions, tau(obs) is four to eight times faster for H33N,H39K iso-2 (tau(obs) approximately 4-10 ms) than for iso-2 (tau(obs) approximately 20-30 ms). T-jumps show that there are no kinetically unresolved (tau < 1-3 micros T-jump dead time) "burst" phases for either protein. Using a two-state model, the folding (k(f)) and unfolding (k(u)) rate constants and the thermodynamic activation parameters standard deltaGf, standard deltaGu, standard deltaHf, standard deltaHu, standard deltaSf, standard deltaSu are evaluated by fitting the data to a function describing the temperature dependence of the apparent rate constant k(obs) (= tau(obs)(-1)) = k(f) + k(u). The results show that there is a small activation enthalpy for folding, suggesting that the barrier to folding is largely entropic. In the "new view," a purely entropic kinetic barrier to folding is consistent with a smooth funnel folding landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144568PMC
http://dx.doi.org/10.1110/ps.9.3.536DOI Listing

Publication Analysis

Top Keywords

folding
9
smooth funnel
8
his-heme kinetic
8
kinetic traps
8
h33nh39k iso-2
8
iso-2 tauobs
8
barrier folding
8
standard
6
cytochrome folds
4
folds smooth
4

Similar Publications

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids.

Biosens Bioelectron

January 2025

Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:

Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.

View Article and Find Full Text PDF

Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.

View Article and Find Full Text PDF

Recipes and ingredients for deep learning models of 3D genome folding.

Curr Opin Genet Dev

January 2025

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. Electronic address:

Three-dimensional genome folding plays roles in gene regulation and disease. In this review, we compare and contrast recent deep learning models for predicting genome contact maps. We survey preprocessing, architecture, training, evaluation, and interpretation methods, highlighting the capabilities and limitations of different models.

View Article and Find Full Text PDF

Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!