In uremia, diminished reactive oxygen intermediate production is an important consequence of impaired neutrophil function. The effects of guanidino compounds, which are known uremic toxins, on neutrophil reactive oxygen intermediate production in vitro were studied. Neutrophils from healthy volunteers were exposed for 3 h to individual guanidino compounds or mixed guanidino compounds (GCmix), at concentrations observed in uremic plasma. After removal of the guanidino compounds, the neutrophils were activated by adhesion, N-formylmethionylleucylphenylalanine, phorbol myristate acetate, or opsonized zymosan, and superoxide production was measured by monitoring lucigenin chemiluminescence. The direct effects of guanidino compounds on superoxide production in activated neutrophils were also measured. The energy status (ATP and creatine phosphate), antioxidant status (total glutathione), and glycolytic flux (lactate production) were measured. GCmix pretreatment decreased superoxide production in activated neutrophils (activated by N-formylmethionylleucylphenylalanine or zymosan) by 50% (P < 0.01), decreased ATP concentrations by 60% (P < 0.05), and inhibited glycolytic flux (lactate production) by 45% (P < 0.01) but did not alter glutathione concentrations. Simultaneous GCmix exposure and activation did not inhibit NADPH oxidase activity in cell lysates but inhibited superoxide formation in zymosan-activated intact neutrophils; this inhibition was reversed after removal of the guanidino compounds. Guanidinosuccinic acid, guanidinopropionic acid, and guanidinobutyric acid, when tested individually, were each as potent as GCmix. The inhibition of neutrophil superoxide generation by guanidino compounds results from decreased energy status. Micromolar concentrations of guanidino compounds significantly inhibit neutrophil metabolism, with serious implications for the functions of neutrophils in host defenses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.V114684 | DOI Listing |
Org Biomol Chem
November 2024
Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
This study focuses on the stereoselective syntheses of 1-deoxysphingosine analogues as potential inhibitors of sphingosine kinase (SphK), particularly targeting its isoforms SphK1 and SphK2, which are implicated in cancer progression and therapy resistance. The research builds on previous work by designing a series of analogues featuring systematic structural modifications like the incorporation of a triazole ring, varying degrees of fluorination, and different head groups (, guanidino, -methylamino, and ,-dimethylamino). These modifications aimed to enhance polar and hydrophobic interactions especially with SphK2.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China. Electronic address:
Transmembrane Serine Protease 2 (TMPRSS2) plays a critical role in tumorigenesis and progression, making its degradation a promising therapeutic strategy. In this study, we designed and synthesized TMPRSS2-PROTACs, including VPOT64 and VPOT76, based on camostat. Both compounds exhibited superior inhibitory effects on HT-29 colorectal and Calu-3 lung cancer cells compared to paclitaxel.
View Article and Find Full Text PDFESC Heart Fail
November 2024
Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background And Aims: The heart is a metabolic organ rich in mitochondria. The failing heart reprograms to utilize different energy substrates, which increase its oxygen consumption. These adaptive changes contribute to increased oxidative stress.
View Article and Find Full Text PDFMethodsX
December 2024
Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria.
The recent discovery of guanidine-dependent riboswitches in many microbes raised interest in the biological function and metabolism of this nitrogen-rich compound. However, very little is known about the concentrations of guanidine in the environment. Several methods have been published for quantifying guanidine and guanidino compounds in human urine and blood, often relying on derivatization followed by fluorescence detection.
View Article and Find Full Text PDFChemistry
December 2024
Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!