Chronic inhibition of nitric oxide synthase (NOS) is known to cause renal parenchymal injury with systemic hypertension. To elucidate the pathogenetic mechanism in renal damage induced by NOS inhibition, N(omega)-nitro-L-arginine methyl ester (L-NAME) was given orally for 12 wk in Wistar rats, and the roles of tissue renin-angiotensin system and transforming growth factor-beta1 (TGF-beta1) were investigated. BP and urinary protein excretion increased significantly in L-NAME rats compared with control rats, and glomerulosclerosis and interstitial fibrosis developed. In L-NAME rats, the cortical tissue levels of angiotensin-converting enzyme activity and angiotensin II were significantly higher than those in control rats. The cortical mRNA expressions of both TGF-beta1 and fibronectin were significantly elevated in L-NAME rats. Immunohistochemically, increased expressions of both fibronectin and alpha-smooth muscle actin were also revealed in L-NAME rats. In L-NAME rats, these histologic injuries and the increased expression of TGF-beta1 were equally ameliorated by either angiotensin-converting enzyme inhibitor or angiotensin II type 1 receptor antagonist, but not by hydralazine. In conclusion, the locally activated renin-angiotensin system in connection with the increased TGF-beta1 expression is a major pathogenetic feature of renal injury in chronically NOS-inhibited rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.V114616 | DOI Listing |
Basic Clin Pharmacol Toxicol
February 2025
Nutrients
December 2024
Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.
Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background: Maternal hypertensive disorders of pregnancy (HDP) was associated with increased risk of congenital hypothyroidism in preterm infants, but its underlying mechanisms remain unclear.
Objective: To investigate the possible mechanisms by which intrauterine exposure to HDP affects thyroid hormone synthesis in preterm infant rats.
Methods: preterm infant rats were obtained by Caesarean section delivery from the L-NAME group and Control groups which was induced by L-NAME and saline, respectively.
iScience
December 2024
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
Preeclampsia (PE) is a multifactorial disorder of pregnancy, characterized by new-onset gestational hypertension. High-throughput mRNA sequencing (RNA-seq) was performed to analyze the gene expression patterns in placentas from patients with early-onset PE (EOPE). PR domain zinc-finger protein 1 (PRDM1) expression increased in the chorionic villi and placental basal plate from patients with PE and nitro--arginine methyl ester (L-NAME)-treated rats.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China. Electronic address:
Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!