Recent molecular studies have resulted in the identification of genetic alterations underlying several hereditary disorders of the liver. Cloning of disease genes are increasing our understanding of the basic defects in liver diseases. This review focuses on selected inherited liver diseases such as hyperbilirubinemic syndromes, hemochromatosis, Wilson disease and genetic cholestatic syndromes and illustrate the knowledge gained on these disorders from molecular studies. Potential implications of the identification of disease genes such as practical applications for diagnosis, information on prognosis and the possibility to design new therapies are discussed.
Download full-text PDF |
Source |
---|
JHEP Rep
February 2025
Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.
Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.
Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).
J Ultrason
December 2024
Department of General and Pediatric Radiology, Wrocław Medical University, Wrocław, Poland.
Aim: Chronic hepatitis C virus infections can lead to liver fibrosis. Appropriate treatment of chronic hepatitis C may result in significant fibrosis reversal. The best method to assess liver fibrosis is an invasive hepatic biopsy.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.
Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.
Front Immunol
January 2025
Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.
CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway.
View Article and Find Full Text PDFFront Immunol
January 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!