The Cdc7p protein kinase in the budding yeast Saccharomyces cerevisiae is thought to help trigger DNA replication by modifying one or more of the factors that assemble at replication origins (ARSs). To investigate events catalyzed by Cdc7p, we compared the structure of replication origins in cells containing conditional mutations in Cdc7p and Cdc8p, a thymidylate kinase that is required for DNA synthesis. High resolution genomic footprinting indicated that the presumptive lagging strand template in ARS1 became highly sensitive to KMnO(4) modification after the CDC7 execution point. These results suggested that Cdc7p triggers DNA unwinding. The transition from late G(1) phase to the CDC7 execution point and from the CDC7 to the CDC8 execution points was accompanied by small but ARS-dependent changes in DNA topology. These results suggested that DNA unwinding before the CDC8 execution point either is highly localized or that the torsional stress associated with initial DNA unwinding is minimized by compensatory protein-DNA structural changes. The ARS DNA structural attributes evident in cells blocked at the CDC8 execution point were also evident in alpha-factor-blocked, G(1) phase cells containing the CDC7 bypass mutant mcm5/cdc46-bob1. This result strongly suggests that the structural changes during the transition from the CDC7 to CDC8 execution points depend on the Cdc7p protein kinase and involve alteration of the minichromosome maintenance protein complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M909787199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!