Herein we demonstrate that replicative cellular senescence in vitro results in sharply reduced inositol 1,4,5-trisphosphate (IP(3)) receptor levels, reduced mitogen-evoked IP(3) formation and Ca(2+) release, and Ca(2+) store depletion. Human diploid fibroblasts (HDFs) underwent either 30 mean population doublings [mean population doublings (MPDs) thymidine labeling index (TI) >92% ("young") or between 53 and 58 MPDs (TI < 28%; "senescent")]. We found that the cytosolic Ca(2+) release triggered by either ionomycin or by several IP(3)-generating mitogens, namely bradykinin, thrombin, platelet-derived growth factor (PDGF), and epidermal growth factor (EGF), was attenuated markedly in senescent HDFs. Notably, the triggered cytosolic Ca(2+) transients were of a smaller magnitude in senescent HDFs. However, the response latency seen with both PDGF and EGF was greater for senescent cells. Finally, a smaller proportion of senescent HDFs showed oscillations. In parallel, IP(3) formation in response to bradykinin or EGF was also attenuated in senescent HDFs. Furthermore, senescent HDFs displayed a sharply diminished Ca(2+) release response to intracellularly applied IP(3). Finally, to compare IP(3) receptor protein levels directly in young and senescent HDFs, their microsomal membranes were probed in Western blots with a highly specific anti-IP(3) receptor antiserum, Ab(40). A approximately 260-kDa band corresponding to the IP(3) receptor protein was noted; its intensity was reduced by approximately 50% in senescent cells. Thus, we suggest that reduced IP(3) receptor expression, lowered IP(3) formation, and Ca(2+) release, as well as Ca(2+) store depletion, all contribute to the deficient Ca(2+) signaling seen in HDFs undergoing replicative senescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.2000.278.4.F576 | DOI Listing |
Biomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.
Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea. Electronic address:
Methylnissolin-3-O-β-d-glucopyranoside (MNG) and methylnissolin (MN) are pterocarpan derivatives that are found in plants, such as Astragalus membranaceus. There are limited existing studies on the potential health benefits of MNG, and currently there is no evidence to suggest that MNG has any impact on skin-aging. Tumor necrosis factor-alpha (TNF-α) plays a significant role in skin aging by promoting chronic inflammation, damaging skin cells, and impairing the skin's natural repair mechanisms.
View Article and Find Full Text PDFAging Cell
December 2024
Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period.
View Article and Find Full Text PDFFood Res Int
December 2024
Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China. Electronic address:
The purpose of the present study was to prepare novel anti-senescent peptides from pearls, characterize their primary sequence and secondary structure, and investigate their protective effects and molecular mechanisms towards D-galactose (D-gal)-induced senescence on human dermal fibroblasts (HDFs). Novel pearl peptides with a purity of 96.58 % and maximum yield of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!