Purpose: One of the drawbacks of polycationic and cationic liposomal gene transfer is its sensitivity to serum. Gene therapy requires the transfectant-DNA complex to be resistant to serum as well as blood. Since Ca2+ has proved to be an efficient cofactor of polycationic gene transfer, we decided to investigate its effects on transfection in the presence of serum.

Methods: We studied transgene expression of luciferase gene (pCMV Luc) on ECV 304 human endothelial cells using H1 histone and DOSPER as transfectants in the presence of 0-100% fetal calf serum.

Results: H1-and DOSPER-mediated transfection was found to be inhibited by serum above the concentration of 10%. If 2 mM Ca2+ or 2 mM Ca2+/0.1 mM chloroquine was included in the culture medium which replace the transfection mixture and was left on the cells for 24 hours postincubation, the inhibiting effect of even 100% serum was overcome.

Conclusions: A high serum level does not interfere with binding and uptake of H1- and DOSPER-DNA complexes, but inhibits subsequent steps such as endosomal escape. Ca2+ in the form of nascent calcium phosphate microprecipitates and other lysosomolytical agents facilitate endosomal/lysosomal release by their fusigenic and membranolytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1007581700996DOI Listing

Publication Analysis

Top Keywords

gene transfer
8
serum
6
histone h1-mediated
4
transfection
4
h1-mediated transfection
4
transfection serum
4
serum inhibition
4
inhibition overcome
4
ca2+
4
overcome ca2+
4

Similar Publications

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .

View Article and Find Full Text PDF

A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Microbiology (Reading)

January 2025

Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.

View Article and Find Full Text PDF

Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer (HGT), including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom HGT are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated.

View Article and Find Full Text PDF

Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!