Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis.

Ann Thorac Surg

Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center of Crawford Long Hospital, and Emory University School of Medicine, Atlanta, Georgia 30365, USA.

Published: March 2000

Background: Multiple organ failure after deep hypothermic circulatory arrest (DHCA) may occur secondary to endothelial dysfunction and apoptosis. We sought to determine if DHCA causes endothelial dysfunction and apoptosis in brain, kidney, lungs, and other tissues.

Methods: Anesthetized pigs on cardiopulmonary bypass were: (1) cooled to 18 degrees C, and had their circulation arrested (60 minutes) and reperfused at 37 degrees C for 90 minutes (DHCA, n = 8); or (2) time-matched normothermic controls on bypass (CPB, n = 6). Endothelial function in cerebral, pulmonary, and renal vessels was assessed by vasorelaxation responses to endothelial-specific bradykinin (BK) or acetylcholine (ACh), and smooth muscle-specific nitroprusside.

Results: In vivo transcranial vasorelaxation responses to ACh were similar between the two groups. In small-caliber cerebral arteries, endothelial relaxation (BK) was impaired in CPB vs DHCA (maximal 55% +/- 2% [p < 0.05] vs 100% +/- 6%). Pulmonary artery ACh responses were comparable between CPB (110% +/- 10%) and DHCA (83% +/- 6%), but responses in pulmonary vein were impaired in DHCA (109% +/- 3%, p < 0.05) relative to CPB (137% +/- 6%). In renal arteries, endothelial (ACh) responses were impaired in DHCA (71% +/- 13%) relative to CPB (129% +/- 14%). Apoptosis (DNA laddering) occurred primarily in duodenal tissue, with a greater frequency in DHCA (56%, p < 0.05) compared with normothermic CPB (17%) and nonbypass controls (0%).

Conclusions: DHCA is associated with endothelial dysfunction in cerebral microvessels but not in the in vivo transcranial vasculature; in addition, endothelial dysfunction was noted in large-caliber renal arteries and pulmonary veins. DHCA is also associated with duodenal apoptosis. Vascular endothelial dysfunction and apoptosis may be involved in the pathophysiology of multisystem organ failure after DHCA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-4975(99)01524-6DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
24
dysfunction apoptosis
16
dhca
11
endothelial
9
hypothermic circulatory
8
circulatory arrest
8
vascular endothelial
8
organ failure
8
vasorelaxation responses
8
vivo transcranial
8

Similar Publications

Aim: Branch atheromatous disease (BAD), characterized by the occlusion of perforating branches near the orifice of a parent artery, often develops early neurological deterioration because the mechanisms underlying BAD remain unclear. Abnormal wall shear stress (WSS) is strongly associated with endothelial dysfunction and plaque growth or rupture. Therefore, we hypothesized that computational fluid dynamics (CFD) modeling could detect differences in WSS between BAD and small-vessel occlusion (SVO), both of which result from perforating artery occlusion/stenosis.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

In the current age of technological advancement, stress has emerged as a silent pandemic affecting individuals, especially young generations, globally. Factors such as increased competition, social pressures fueled by social media and smartphones, and a sense of diminished control in the face of modern challenges contribute to rising stress levels. In addition to the negative implications on mental well-being, stress affects physiological processes such as the menstrual cycle.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!