Biodegradable implants are increasingly used in the field of operative sports medicine. Today, a tremendous variety of implants such as interference screws, staples, sutures, tacks, suture anchors, and devices for meniscal repair are available. These implants consist of different biodegradable polymers that have substantially different raw material characteristics such as in vivo degradation, host-tissue response, and osseous replacement. Because these devices have become the standard implant for several operative procedures, it is essential to understand their biological base. The purpose of this report is to provide a comprehensive insight into biodegradable implant biology for a better understanding of the advantages and risks associated with using these implants in the field of operative sports medicine. In particular, in vivo degradation, biocompatibility, and the osseous replacement of the implants are discussed. A standardized classification system to document and treat possible adverse tissue reactions is given, with special regard to extra-articular and intra-articular soft-tissue response and to osteolytic lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0749-8063(00)90055-0 | DOI Listing |
Foot Ankle Int
January 2025
Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Background: To provide improved treatment for hallux valgus (HV), we sought to understand more about the pathophysiologic connection between flatfoot deformity and HV by comparing coronal plane alignment of the medial column of the foot for patients with isolated HV, isolated flatfoot, and combined HV-flatfoot vs controls.
Methods: This study retrospectively assessed a consecutive series of 33 patients with combined symptomatic and radiographic HV and flatfoot, 33 isolated symptomatic HV, 33 isolated symptomatic flatfoot, and 33 controls. The medial column alignment was assessed in the coronal plane using 3-dimensional weightbearing computed tomography (WBCT); rotation was measured for the navicular, medial cuneiform, and first metatarsal (M1).
Foot Ankle Int
January 2025
Department of Orthopaedic Surgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.
View Article and Find Full Text PDFPatient Saf Surg
January 2025
NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
Background: Meniscal surgery is one of the most frequent orthopaedic procedures performed worldwide. There is a wide range of possible treatment errors that can occur following meniscal surgery. In Norway, patients subject to treatment errors by hospitals and private institutions can file a compensation claim free of charge to the Norwegian System of Patient Injury Compensation (NPE).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Physical Therapy, University of Kentucky, 900 S Limestone, Lexington, KY, 40536-0284, USA.
Background: Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!