We evaluated effects of the thiazolidinedione, rosiglitazone, on insulin-induced activation of protein kinase C (PKC)-zeta/lambda and glucose transport in adipocytes of Goto-Kakizaki (GK)-diabetic and nondiabetic rats. Insulin effects on PKC-zeta/lambda and 2-deoxyglucose uptake were diminished by approximately 50% in GK adipocytes, as compared with control adipocytes. This defect in insulin-induced PKC-zeta/lambda activation was associated with diminished activation of IRS-1-dependent phosphatidylinositol (PI) 3-kinase, and was accompanied by diminished phosphorylation of threonine 410 in the activation loop of PKC-zeta; in contrast, protein kinase B (PKB) activation and phosphorylation were not significantly altered. Rosiglitazone completely reversed defects in insulin-stimulated 2-deoxyglucose uptake, PKCzeta/lambda enzyme activity and PKC-zeta threonine 410 phosphorylation, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation in GK adipocytes. Similarly, in adipocytes of nondiabetic rats, rosiglitazone provoked increases in insulin-stimulated 2-deoxyglucose uptake, PKC-zeta/lambda enzyme activity and phosphorylation of both threonine 410 activation loop and threonine 560 autophosphorylation sites in PKC-zeta, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation. Our findings suggest that (a) decreased effects of insulin on glucose transport in adipocytes of GK-diabetic rats are due at least in part to diminished phosphorylation/activation of PKC-zeta/lambda, and (b) thiazolidinediones enhance glucose transport responses to insulin in adipocytes of both diabetic and nondiabetic rats through increases in phosphorylation/activation of PKC-zeta/lambda.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M000287200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!