Methylation increases the open probability of the epithelial sodium channel in A6 epithelia.

J Biol Chem

Department of Physiology and the Center for Cell & Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Published: June 2000

We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3-DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised "inside-out" patches usually decreased within 1-2 min; in the presence of S-adenosyl-l-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M000954200DOI Listing

Publication Analysis

Top Keywords

sodium channel
20
channel activity
16
open probability
12
epithelial sodium
12
channel
9
sodium
8
sodium channels
8
channel open
8
activity excised
8
excised patches
8

Similar Publications

Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.

View Article and Find Full Text PDF

Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.

View Article and Find Full Text PDF

Conotoxins(CTXs) can specifically act on multiple ion channels, which are crucial for the development of neurobiology and novel targeted drug development. At present, >10,000 kinds of CTXs have been sequenced, it would be extremely laborious to conduct experiments for each. μ-CTX KIIIA is a type of substance that can selectively recognize voltage-gated sodium ion channels.

View Article and Find Full Text PDF

Structural and electrochemical investigation of P2-NaFeMnO high-performance sodium ion cathode materials.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:

Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.

View Article and Find Full Text PDF

Head lice infestation remains one of the most common child problems. This problem is not only attributed to the ability of head lice to spread rapidly but also because of the head lice resistance that develops from incomplete or improper treatment. Pyrethroids are a group of medications that have been widely used for the treatment of head lice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!