The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi9926328 | DOI Listing |
Sci Rep
January 2025
Dep. Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081, LA, The Netherlands.
The increasing use of recreational nitrous oxide ([Formula: see text]O) in the Netherlands and its link to traffic accidents highlights the need for reliable detection methods for law enforcement. This study focused on ex vivo detection of [Formula: see text]O in exhaled breath and examining its persistence in the human body. Firstly, a low-cost portable infrared based detector was selected and validated to detect [Formula: see text]O in air.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
Denitrification has been identified as a significant nitrate attenuation process in groundwater systems. Hence, accurate quantification of denitrification rates is consequently important for the better understanding and assessment of nitrate contamination of groundwater systems. There are, however, few studies that have investigated quantification of shallow groundwater denitrification rates using different analytical approaches or assuming different kinetic reaction models.
View Article and Find Full Text PDFCureus
December 2024
Paediatrics, Birmingham Community Healthcare NHS Foundation Trust, Birmingham, GBR.
Introduction This report explores patient satisfaction in a dental sedation service in primary care for paediatric patients. The study explores different behavioural management techniques and additional supportive aids as adjuncts to inhalation sedation to improve patient satisfaction. Aim and objective To determine patient satisfaction with pre-assessment, treatment and aftercare in inhalation sedation services in primary care.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.
View Article and Find Full Text PDFJ Psychoactive Drugs
January 2025
Department of Psychology, University of Otago, Ōtepoti/Dunedin, Aotearoa, New Zealand.
Non-medical use of nitrous oxide (NO) is becoming increasingly popular globally, yet little data exists regarding NO in Aotearoa New Zealand. We aimed to explore patterns of use and harm in those who consume NO in Aotearoa, and related knowledge, perceptions and attitudes of those with and without NO experience. A convenience sample of people with NO experience ( = 466) and without ( = 510) completed an online survey about NO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!