The efficacy of chloroquine in the treatment of uncomplicated falciparum malaria in Africa is heavily compromised by high levels of drug resistance. The occurrence of active site mutations in the Plasmodium falciparum multi drug resistance-gene 1 (pfmdr1) has been associated with development of resistance to chloroquine. This study investigates the occurrence of several mutations at codons 86, 1042 and 1246 of the pfmdr1-gene in infected blood samples taken from Ugandan children before treatment with chloroquine and their relationship to clinical and parasitological resistance. Even though a clear association of CQR to one certain pfmdr1 single point mutation could not be substantiated, the frequency of resistance was consistently higher for samples revealing any of the mutations than among wild type samples, and 90% of the clinically resistant samples did present a mutation. Thus detection of these allelic pfmdr1 polymorphisms is not a decisive factor for prediction of clinical chloroquine resistance, but an interplay of the different mutations with unknown cofactors is to be assumed and the possible role of other genetic alterations remains to be investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-3156.2000.00543.xDOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
chloroquine
5
resistance
5
correlation vivo-resistance
4
vivo-resistance chloroquine
4
chloroquine allelic
4
allelic polymorphisms
4
polymorphisms plasmodium
4
falciparum isolates
4
isolates uganda
4

Similar Publications

Targeting IspD for Anti-infective and Herbicide Development: Exploring Its Role, Mechanism, and Structural Insights.

J Med Chem

January 2025

Helmholtz Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for Infection Research (HZI), Saar-land University, Campus E8.1, 66123Saarbrücken, Germany.

Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including , , and as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target.

View Article and Find Full Text PDF

Introduction: Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and deletions), and SNP barcodes to provide population genetics estimates of and parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites.

View Article and Find Full Text PDF

Epidemiological characteristics of imported malaria related to international travel in the Republic of Korea from 2009 to 2018.

Sci Rep

January 2025

Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Malaria, transmitted by mosquitoes infected with Plasmodium parasites, remains a significant health issue with global travel increasing the risk of imported malaria. This study investigates imported malaria cases in the Republic of Korea from 2009 to 2018 using data from the Korea National Infectious Disease Surveillance System. During this period, 601 imported cases were reported, with 82.

View Article and Find Full Text PDF

Acquisition of Fc-afucosylation of PfEMP1-specific IgG is age-dependent and associated with clinical protection against malaria.

Nat Commun

January 2025

Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation).

View Article and Find Full Text PDF

Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!