A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area. The method has been successfully applied to N-acetyl-L-alanine-N-methylamide (alanine dipeptide), sampling experimentally observed conformations inaccessible to MD alone under the chosen conditions. The method predicts correctly the increased partial flexibility of the mutant Y35G compared to native bovine pancreatic trypsin inhibitor. In particular, the improvement over MD consists of the detection of conformational flexibility that corresponds closely to slow motions identified by nuclear magnetic resonance techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(00)01295-3 | DOI Listing |
Proteins
March 2003
Division of Mathematical Biology, National Institute for Medical Research, London, United Kingdom.
The simulation method leap-dynamics (LD) has been applied to protein thermal unfolding simulations to investigate domain-specific unfolding behavior. Thermal unfolding simulations of the 148-residue protein apo-calmodulin with implicit solvent were performed at temperatures 290 K, 325 K, and 360 K and compared with the corresponding molecular dynamics trajectories in terms of a number of calculated conformational parameters. The main experimental results of unfolding are reproduced in showing the lower stability of the C-domain: at 290 K, both the N- and C-domains are essentially stable; at 325 K, the C-domain unfolds, whereas the N-domain remains folded; and at 360 K, both domains unfold extensively.
View Article and Find Full Text PDFFEBS Lett
March 2000
Physical Biochemistry Division, National Institute for Medical Research, Mill Hill, London, UK.
A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!