In the yeast Saccharomyces cerevisiae, uptake of iron is largely regulated by the transcription factor Aft1. cDNA microarrays were used to identify new iron and AFT1-regulated genes. Four homologous genes regulated as part of the AFT1-regulon (ARN1-4) were predicted to encode members of a subfamily of the major facilitator superfamily of transporters. These genes were predicted to encode proteins with 14 membrane spanning domains and were from 26 to 53% identical at the amino acid level. ARN3 is identical to SIT1, which is reported to encode a ferrioxamine B permease. Deletion of ARN3 did not prevent yeast from using ferrioxamine B as an iron source; however, deletion of ARN3 and FET3, a component of the high affinity ferrous iron transport system, did prevent uptake of ferrioxamine-bound iron and growth on ferrioxamine as an iron source. The siderophore-mediated transport system and the high affinity ferrous iron transport system were localized to separate cellular compartments. Epitope-tagged Arn3p was expressed in intracellular vesicles that co-sediment with the endosomal protein Pep12. In contrast, Fet3p was expressed on the plasma membrane and was digested by extracellular proteases. These data indicate that S. cerevisiae has two pathways for ferrrioxamine-mediated iron uptake, one occurring at the plasma membrane and the other occurring in an intracellular compartment.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.14.10709DOI Listing

Publication Analysis

Top Keywords

iron uptake
12
transport system
12
iron
9
saccharomyces cerevisiae
8
predicted encode
8
deletion arn3
8
ferrioxamine iron
8
iron source
8
high affinity
8
affinity ferrous
8

Similar Publications

Background: The importance of detecting amyloid β (Aβ) in the early stages of Alzheimer's disease has markedly increased following the approval of Lecanemab, a disease-modifying drug. MRI is a non-invasive and less expensive rather than amyloid PET as gold standard for Aβ biomarker, but its clinical ability to detect Aβ has not been demonstrated. MRI phase information reflects paramagnetic substance including iron associated with Aβ aggregation.

View Article and Find Full Text PDF

Background: The 18F-AV-1451 radioligand enables in-vivo identification of tau neurofibrillary tangles that are considered as biomarkers of neurodegeneration in Alzheimer Disease (AD). However, off-target radioligand binding is also observed in basal ganglia, known as an iron-rich region. Hence, it is important to distinguish between radioligand-identified tissue neurodegeneration and iron-related radioligand binding effects.

View Article and Find Full Text PDF

Background: The 18F-AV-1451 radioligand enables in-vivo identification of tau neurofibrillary tangles that are considered as biomarkers of neurodegeneration in Alzheimer Disease (AD). However, off-target radioligand binding is also observed in basal ganglia, known as an iron-rich region. Hence, it is important to distinguish between radioligand-identified tissue neurodegeneration and iron-related radioligand binding effects.

View Article and Find Full Text PDF

Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy.

Carbohydr Polym

March 2025

State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China. Electronic address:

Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe as cross-linkers.

View Article and Find Full Text PDF

Differentiated effects and mechanisms of N-, P-, S-, and Fe-modified biochar materials for remediating Cd- and Pb-contaminated calcareous soil.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.

To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!