Effects of the anaphylatoxins C3a and C5a on eosinophil and neutrophil adhesion to HUVEC and to primary culture human bronchial epithelial cells (HBEC) were investigated. Activities on both leukocytes and on structural cells were examined. C3a upregulated beta2 integrin expression and caused shedding of L-selectin on eosinophils, but had no effect on neutrophil adhesion molecule expression. C5a upregulated beta2 integrins and caused shedding of L-selectin on both eosinophils and neutrophils. The potency of C5a was equivalent on both cell types; however, the magnitude of the changes in each of these adhesion molecules was significantly greater in neutrophils than eosinophils. Neither C3a nor C5a altered expression of ICAM-1, VCAM-1, E-selectin or P-selectin on either HUVEC or HBEC. C5a induced adhesion of both neutrophils and eosinophils to unstimulated HUVEC or HBEC, and adhesion was further enhanced when HUVEC and HBEC were "primed" with TNF-alpha and IFN-gamma, respectively. C3a failed to enhance adhesion of either eosinophils or neutrophils to unprimed HUVEC or HBEC, and enhanced only eosinophil adhesion to cytokine-primed HUVEC or HBEC. Similar to C3a, C3a(desArg) and a C3a-analog peptide E7 also enhanced eosinophil adhesion only to cytokine-primed HUVEC and HBEC. These results support the traditional view of anaphylatoxins as leukocyte-specific mediators. The specificity of C3a for eosinophils implicates this molecule as a potential participant in allergic inflammation. The pro-adhesive effects of C3a(desArg) suggest that this molecule, previously characterized as a spasmogenically inactive derivative of C3a, may also alter leukocyte dynamics and migration. Finally, activation of endothelium may represent an important control mechanism for C3a-mediated adhesion preventing unchecked eosinophil adhesion to uninflamed systemic vasculature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0162-3109(99)00178-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!