Aromatic fatty acids, of which phenylacetate is a prototype, constitute a class of low toxicity drugs with demonstrated antitumor activity in experimental models and in humans. Using in vitro models, we show here a tight correlation between tumor growth arrest by phenylacetate and activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily. In support are the following observations: (a) the efficacy of phenylacetate as a cytostatic agent was correlated with pre-treatment levels of PPARgamma, as documented using established tumor lines and forced expression models; (b) in responsive tumor cells, PPARgamma expression was up-regulated within 2-9 h of treatment preceding increases in p21waf1, a marker of cell cycle arrest; (c) inhibition of mitogen-activated protein kinase, a negative regulator of PPARgamma, enhanced drug activity; and (d) phenylacetate interacted directly with the ligand-binding site of PPARgamma and activated its transcriptional function. The ability to bind and activate PPARgamma was common to biologically active analogues of phenylacetate and corresponded to their potency as antitumor agents (phenylacetate < phenylbutyrate < p-chloro-phenylacetate < p-iodo-phenylbutyrate), whereas an inactive derivative, phenylacetylglutamine, had no effect on PPARgamma. These findings point to PPARgamma as a novel target in cancer therapy and provide the first identification of ligands that have selective antitumor activity in patients.
Download full-text PDF |
Source |
---|
Angew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Department of Polymer Science and Engineering, 96 Jinzhai Road, 230026, , 230026, Hefei, CHINA.
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Medical Laboratory Technology Department, Beirut Arab University, Beirut, Lebanon.
Cancer stem cells (CSCs) are the key drivers of tumorigenesis and relapse. A growing body of evidence reveals the tremendous power of CSCs to directly resist innate and adaptive anti-tumor immune responses. The immunomodulatory property gives CSCs the ability to control the tumor immune microenvironment (TIME).
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Hepatobiliary Surgery, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China.
Background: Pancreatic cancer is a highly malignant tumor with a poor prognosis, and current treatment methods have limited effectiveness. Therefore, developing new and more effective therapeutic strategies is crucial. This study aims to establish pH-responsive silk fibroin (SF) nanoparticles encapsulating β-hydroxyisovalerylshikonin (SF@β-HIVS) to enhance the therapeutic effects against pancreatic cancer.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA.
Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!