Quantitative interrogation of micropatterned biomolecules by surface force microscopy.

Ultramicroscopy

University of Washington Engineered Biomaterials and Department of Bioengineering, University of Washington, Seattle 98195-1750, USA.

Published: February 2000

Synthetic biomaterials are widely used in medical implants with success in improving and extending quality of life. However, these materials were not originally designed to interact with cells through specific signaling pathways. As a result, the interaction with the body is mediated through passive adsorption of a disorganized protein monolayer. Next generation biomaterials have been proposed to be active in modifying the biological response of the host through the incorporation of specific biorecognition moieties. An important tool in the development of these novel active biomaterials is the scanning force microscope (SFM). The SFM allows for interrogation of bioactive biomaterials in mapping or spectroscopic modes. In this work, micropatterned protein surfaces were prepared using biomolecules implicated in wound healing. The surfaces were imaged via SFM and the specific binding forces between surface associated biomolecules and antibody functionalized tips were quantified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3991(99)00150-3DOI Listing

Publication Analysis

Top Keywords

quantitative interrogation
4
interrogation micropatterned
4
micropatterned biomolecules
4
biomolecules surface
4
surface force
4
force microscopy
4
microscopy synthetic
4
biomaterials
4
synthetic biomaterials
4
biomaterials medical
4

Similar Publications

Quantitative chromatin protein dynamics during replication origin firing in human cells.

Mol Cell Proteomics

January 2025

Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.

Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.

View Article and Find Full Text PDF

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to interrogate protein structure and dynamics. With the ability to study almost any protein without a size limit, including intrinsically disordered ones, HDX-MS has shown fast growing importance as a complement to structural elucidation techniques. Current experiments compare two or more related conditions (sequences, interaction partners, excipients, conformational states, etc.

View Article and Find Full Text PDF

Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.

View Article and Find Full Text PDF

Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA).

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!