This paper presents preliminary results of a recent study whose overall objectives are to determine the mechanisms contributing significantly to subcritical acoustic penetration into ocean sediments, and to quantify the results for use in sonar performance prediction for the detection of buried objects. In situ acoustic measurements were performed on a sandy bottom whose geoacoustical and geomorphological properties were also measured. A parametric array mounted on a tower moving on a rail was used to insonify hydrophones located above and below the sediment interface. Data covering grazing angles both above and below the nominal critical angle and in the frequency range 2-15 kHz were acquired and processed. The results are compared to two models that account for scattering of sound at the rough water-sediment interface into the sediment. Although all possible mechanisms for subcritical penetration are not modeled, the levels predicted by both models are consistent with the levels observed in the experimental data. For the specific seafloor and experimental conditions examined, the analysis suggests that for frequencies below 5-7 kHz sound penetration into the sediment at subcritical insonification is dominated by the evanescent field, while scattering due to surface roughness is the dominant mechanism at higher frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.428411 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy.
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
Global concern over per- and polyfluoroalkyl substances (PFASs), especially perfluorooctane sulfonate (PFOS), disposal prompts the search for effective degradation methods. Subcritical water hydrothermal treatment shows promise but suffers from unclear degradation pathways, hindering engineering application design due to unknown intermediate products. This study introduces Fe-based amorphous alloy to enhance the subcritical water hydrothermal degradation of PFOS, achieving a degradation rate of approximately 85 % under optimized conditions of 325 °C and 1 M sodium bicarbonate (NaHCO₃), compared to 56 % without the alloy.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
This study evaluated the effect of black soldier fly () larvae oil (BO) produced by a novel technique, subcritical butane extraction, on the flesh quality, lipid nutrients and muscle growth of rainbow trout () fillet, and investigated the alleviating mechanisms of dietary astaxanthin (AST) supplementation. Two hundred and forty fish (215.16 ± 2.
View Article and Find Full Text PDFWaste Manag
January 2025
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:
Polyvinylidene fluoride (PVDF) binder removal is critical for the recovery of valuable metal materials during the treatment of spent lithium-ion batteries (LIBs). This study proposed a new PVDF removal method through subcritical methanol extraction. The optimal conditions and mechanism of the method for the liberation of cathode materials were explored, and the recovered cathode materials, aluminum foils (Al foils), and extracted binder were characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!