AI Article Synopsis

  • Shigella and shiga toxin-producing Escherichia coli are the main causes of bloody diarrhea in Latin America.
  • The rising antimicrobial resistance of Shigella poses a serious public health challenge.
  • E. coli O157:H7 is well-known, but new non-O157 strains are also emerging and can cause severe illness, including hemolytic uremic syndrome.

Article Abstract

In Latin America, Shigella and shiga toxin-producing Escherichia coli are the two leading agents in the cause of bloody diarrhea. The already high and increasing antimicrobial resistance of Shigella also is a significant problem. Shiga toxin-producing E. coli is an emerging disease with life-threatening complications: hemolytic uremic syndrome. Although E. coli O157:H7 remains the most commonly recognized serotype, recently emerging, non-O157 bacteria may be the cause of a similar spectrum of disease in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5520(05)70217-8DOI Listing

Publication Analysis

Top Keywords

shiga toxin-producing
12
shigella shiga
8
toxin-producing escherichia
8
escherichia coli
8
bloody diarrhea
8
latin america
8
coli
4
coli causing
4
causing bloody
4
diarrhea latin
4

Similar Publications

Several areas of the world suffer a notably high incidence of Shiga toxin-producing . To assess the impact of persistent cross-species transmission systems on the epidemiology of O157:H7 in Alberta, Canada, we sequenced and assembled O157:H7 isolates originating from collocated cattle and human populations, 2007-2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model.

View Article and Find Full Text PDF

Characterization of Broad Spectrum Bacteriophage vB ESM-pEJ01 and Its Antimicrobial Efficacy Against Shiga Toxin-Producing in Green Juice.

Microorganisms

January 2025

Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea.

Shiga toxin-producing (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting and species, and assessed its efficacy in reducing STEC in vitro and food matrices.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!