Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis.

Proc Natl Acad Sci U S A

Departments of Medicine, Molecular Genetics and Microbiology, Pathology and Laboratory Medicine, and Pediatrics, and Center for Mammalian Genetics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.

Published: April 2000

Few molecular events important to platelet biogenesis have been identified. Mice homozygous for the spontaneous, recessive mutation gunmetal (gm) have prolonged bleeding, thrombocytopenia, and reduced platelet alpha- and delta-granule contents. Here we show by positional cloning that gm results from a G-->A substitution mutation in a splice acceptor site within the alpha-subunit of Rab geranylgeranyl transferase (Rabggta), an enzyme that attaches geranylgeranyl groups to Rab proteins. Most Rabggta mRNAs from gm tissues skipped exon 1 and lacked a start codon. Rabggta protein and Rab geranylgeranyl transferase (GGTase) activity were reduced 4-fold in gm platelets. Geranylgeranylation and membrane association of Rab27, a Rab GGTase substrate, were significantly decreased in gm platelets. These findings indicate that geranylgeranylation of Rab GTPases is critical for hemostasis. Rab GGTase inhibition may represent a new treatment for thrombocytosis and clotting disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18176PMC
http://dx.doi.org/10.1073/pnas.080517697DOI Listing

Publication Analysis

Top Keywords

rab geranylgeranyl
12
geranylgeranyl transferase
12
rab
8
mutation gunmetal
8
rab ggtase
8
transferase alpha
4
alpha mutation
4
gunmetal mouse
4
mouse reduces
4
reduces rab
4

Similar Publications

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in , encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of , the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown.

View Article and Find Full Text PDF

α-Amino bisphosphonate triazoles serve as GGDPS inhibitors.

Bioorg Med Chem Lett

April 2024

Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, US. Electronic address:

Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities.

View Article and Find Full Text PDF

Background: Currently, there is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder. Many biomarkers have been proposed, but because ALS is a clinically heterogeneous disease with an unclear etiology, biomarker discovery for ALS has been challenging due to the lack of specificity of these biomarkers. In recent years, the role of autophagy in the development and treatment of ALS has become a research hotspot.

View Article and Find Full Text PDF

Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors.

View Article and Find Full Text PDF

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!