Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151.

J Biol Chem

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: March 2000

Previously we established that the alpha(3)beta(1) integrin shows stable, specific, and stoichiometric association with the TM4SF (tetraspannin) protein CD151. Here we used a membrane impermeable cross-linking agent to show a direct association between extracellular domains of alpha(3)beta(1) and CD151. The alpha(3)beta(1)-CD151 association site was then mapped using chimeric alpha(6)/alpha(3) integrins and CD151/NAG2 TM4SF proteins. Complex formation required an extracellular alpha(3) site (amino acids (aa) 570-705) not previously known to be involved in specific integrin contacts with other proteins and a region (aa 186-217) within the large extracellular loop of CD151. Notably, the anti-CD151 monoclonal antibody TS151r binding epitope, previously implicated in alpha(3) integrin association, was mapped to the same region of CD151 (aa 186-217). Finally, we demonstrated that both NH(2)- and COOH-terminal domains of CD151 are located on the inside of the plasma membrane, thus confirming a long suspected model of TM4SF protein topology.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.13.9230DOI Listing

Publication Analysis

Top Keywords

tm4sf protein
8
protein cd151
8
cd151
6
direct extracellular
4
extracellular contact
4
integrin
4
contact integrin
4
integrin alpha3beta1
4
tm4sf
4
alpha3beta1 tm4sf
4

Similar Publications

Background: The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF).

View Article and Find Full Text PDF

Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date.

View Article and Find Full Text PDF

The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers.

View Article and Find Full Text PDF

TM4SF family members (TM4SFs) have been shown to be aberrantly expressed in multiple types of cancer. However, a comprehensive investigation of the TM4SFs has yet to be performed in LIHC. The study comprehensively investigated the expression and prognostic value of TM4SFs.

View Article and Find Full Text PDF

Potential diagnostic of lymph node metastasis and prognostic values of TM4SFs in papillary thyroid carcinoma patients.

Front Cell Dev Biol

December 2022

Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Although the prognosis of papillary thyroid carcinoma (PTC) is relatively good, it causes around 41,000 deaths per year, which is likely related to recurrence and metastasis. Lymph node metastasis (LNM) is an important indicator of PTC recurrence and transmembrane 4 superfamily (TM4SF) proteins regulate metastasis by modulating cell adhesion, migration, tissue differentiation, and tumor invasion. However, the diagnostic and prognostic values of TM4SF in PTC remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!