A metastable state of myoglobin is produced by reduction of metmyoglobin at low temperatures. This is done either by irradiation with x-rays at 80 K or by electron transfer from photoexcited tris(2, 2'-bipyridine)-ruthenium(II) at 20 K. At temperatures above 150 K, the conformational transition toward the equilibrium deoxymyoglobin is observed. X-ray crystallography, Raman spectroscopy, and temperature-dependent optical absorption spectroscopy show that the metastable state has a six-ligated iron low-spin center. The x-ray structure at 115K proves the similarity of the metastable state with metmyoglobin. The Raman spectra yield the high-frequency vibronic modes and give additional information about the distortion of the heme. Analysis of the temperature dependence of the line shape of the Soret band reveals that a relaxation within the metastable state starts at approximately 120 K. Parameters representative of static properties of the intermediate state are close to those of CO-ligated myoglobin, while parameters representative of dynamics are close to deoxymyoglobin. Thus within the metastable state the relaxation to the equilibrium is initiated by changes in the dynamic properties of the active site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300800PMC
http://dx.doi.org/10.1016/S0006-3495(00)76755-5DOI Listing

Publication Analysis

Top Keywords

metastable state
20
intermediate state
8
state myoglobin
8
optical absorption
8
raman spectroscopy
8
x-ray structure
8
parameters representative
8
state
7
metastable
5
protein dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!