Reaction of histamine with tetrabromophthalic anhydride and protection of its imidazole moiety with tritylsulfenyl chloride, followed by hydrazinolysis, afforded N-1-tritylsulfenyl histamine, a key intermediate which was further derivatized at its aminoethyl moiety. Carboxamido derivatives were obtained by reaction of the key intermediate with carboxylic acid anhydrides, acyl chlorides or carboxylic acids in the presence of carbodiimides. Reaction of the same key intermediate with isocyanates, isothiocyanates, cyanamide or dicyandiamide afforded another series of compounds. Deprotection of the above-mentioned intermediates with hydrochloric acid in dioxane afforded two series of compounds, histamine derivatives possessing carboxamido, ureido, thioureido or guanidino moieties in their molecule. The new derivatives were assayed as activators of three carbonic anhydrase (CA) isozymes, hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound form, h = human, b = bovine isozyme). Efficient activation was observed against all three isozymes, but especially against hCA I and bCA IV, with affinities in the nanomolar range for the best compounds. hCA II was, on the other hand, activatable with affinities around 10-25 nM. This new class of CA activators might lead to the development of drugs/diagnostic agents for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0223-5234(00)00102-1 | DOI Listing |
ACS Nano
January 2025
Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China.
Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.
View Article and Find Full Text PDFSmall
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.
View Article and Find Full Text PDFActa Parasitol
January 2025
Parasitology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
Background: The freshwater snails Biomphalaria alexandrina and Bulinus trancatus are key contributors to the transmission of S. mansoni and S.haematobium, respectively, for being their intermediate hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!