In the first experiment, heifers were infected experimentally with bovine viral diarrhea virus type II (BVDV-type II, strain CD87; characterized by high morbidity and mortality). Subsequently, in vitro fertilized embryos were produced from oocytes collected on Day 4, 8, and 16 post infection. In a total of 29 heifers, the infectious virus was detected in 55% of the samples of the follicular fluid, in 10% of the oviductal cells, in 10% of the uterine flushes and in 41% of the in vitro fertilized embryos. The highest number of embryos associated with the virus was detected in the group of animals slaughtered on Day 8 post infection (58%). The amount of the virus (10(1.5-2.0) TCID50/mL) associated with the washed single embryos generated from oocytes of heifers 8 and 16 d post infection was sufficient for disease transmission by intravenous inoculation to the seronegative recipients (6/15). In the second experiment, uninfected oocytes were exposed in vitro to BVDV (10(5) TCID50/mL) in the maturation medium and then fertilized and cultured prior to viral assay. Virus was detected in 4 of 7 samples containing embryos but not in samples of embryos produced from the control group of uninfected oocytes. The presence of BVDV in the IVF system did not affect embryonic development in vitro. In conclusion, it appears that BVDV-type II has the ability to be transferred with oocytes through the IVF system, resulting in infectious embryos with normal morphological appearance which may have a potential for disease transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0093-691x(98)00070-3DOI Listing

Publication Analysis

Top Keywords

embryos produced
12
post infection
12
virus detected
12
embryos
8
bovine viral
8
viral diarrhea
8
diarrhea virus
8
virus type
8
vitro fertilized
8
fertilized embryos
8

Similar Publications

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.

View Article and Find Full Text PDF

Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish () are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages.

View Article and Find Full Text PDF

Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring.

View Article and Find Full Text PDF

Microspore culture is an efficient and rapid method that produces doubled haploid (DH) lines for hybrid breeding in crops and vegetables. However, the low frequency of microspore embryogenesis and spontaneous diploidization in Chinese kale still require improvement. In the present work, an efficient microspore culture protocol was constructed and used for DH producing in Chinese kale breeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!