A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of peroxisome proliferator-activated receptor alpha on ubiquinone biosynthesis. | LitMetric

The control of ubiquinone biosynthesis by peroxisome proliferators was investigated using peroxisome proliferator activated receptor alpha (PPARalpha)-null mice. Administration of 2-(diethylhexyl)phthalate to control mice resulted in elevated ubiquinone levels in the liver, while dolichol, dolichyl-P and cholesterol concentrations remained unchanged. In PPARalpha-null mice, the level of these lipids were similar to control levels and administration of the peroxisome proliferator did not increase the levels of ubiquinone. The increase in ubiquinone levels was the result of increased synthesis. Induction was most pronounced in liver, kidney and heart, which have relatively high levels of PPARalpha. When the tissue concentration of hydrogen peroxide was elevated by inhibition of catalase activity with aminotriazole, the amount of ubiquinone was not increased, suggesting that the induction of ubiquinone synthesis occured through a direct mechanism. The activities of branch-point enzymes FPP-synthase, squalene synthase, cis-prenyltransferase, trans-prenyltransferase and NPHB-transferase were substantially increased in control but not in PPARalpha-null mice after treatment with peroxisome proliferators. These data suggest that the induction of ubiquinone biosynthesis after administration of peroxisome proliferators is dependent on the PPARalpha through regulation of some of the mevalonate pathway enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.3596DOI Listing

Publication Analysis

Top Keywords

ubiquinone biosynthesis
12
peroxisome proliferators
12
pparalpha-null mice
12
receptor alpha
8
ubiquinone
8
peroxisome proliferator
8
ubiquinone levels
8
administration peroxisome
8
induction ubiquinone
8
peroxisome
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!