Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum.

J Physiol Biochem

Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University of Madrid, Spain.

Published: December 1999

An experimental rat model of Parkinson's disease was established by injecting rats directly in the striatum with the neurotoxic agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to study the action mechanism of this neurotoxic agent, MPTP and its main metabolite 1-methyl-4-phenylpyridinium (MPP+) were also added to suspensions of pyruvate/malate-supplemented nonsynaptic brain mitochondria, and the rates of hydrogen peroxide and ATP production were measured. Intrastriatal administration of MPTP produced a pronounced decrease in striatal dopamine levels (p < 0.005) and a strong increase in 3,4-hydroxiphenylacetic acid/dopamine ratio (an indicator of dopamine catabolism; p < 0.005) in relation to controls, as evaluated by in situ microdialysis. MPTP addition to rat brain mitochondria increased hydrogen peroxide production by 90%, from 1.37+/-0.35 to 2.59+/-0.48 nanomoles of H2O2/minute . mg of protein (p < 0.01). The metabolite MPP+ produced a marked decrease on the rate of ATP production of brain mitochondria (p < 0.005). These findings support the mitochondria-oxidative stress-energy failure hypothesis of MPTP-induced brain neurotoxicity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

atp production
12
brain mitochondria
12
neurotoxic agent
8
hydrogen peroxide
8
mptp
5
mptp brain
4
brain mitochondrial
4
mitochondrial h2o2
4
h2o2 atp
4
production
4

Similar Publications

Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.

View Article and Find Full Text PDF

Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.

View Article and Find Full Text PDF

Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects.

Pest Manag Sci

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.

Background: Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!