Aims: To investigate polymorphism within the tumour necrosis factor alpha (TNF-alpha) promoter region and within the interleukin-1 receptor antagonist (IL-1Ra) gene in a group of patients with vasculitis associated corneal melting.

Methods: The polymorphic regions at position -308 on the TNF-alpha promoter region and in intron 2 of the IL-1Ra gene were amplified by the polymerase chain reaction (PCR). The resultant products were separated by electrophoresis on agarose gels and visualised by ethidium bromide staining. Genotype and allele frequencies for the 20 patients were compared with healthy controls from the same geographical area.

Results: The allele frequencies in the patient and control groups respectively for the TNF-alpha and IL-1Ra sites studied were as follows: TNF1, 82.5% and 80.2%; TNF2, 17.5% and 19.8%; IL-1Ra*1, 82. 5% and 78.3%; IL-1Ra*2, 15% and 20%; IL-1Ra*3 2.5% and 1.5%. Although there was a trend for the IL1Ra*2 allele to be more common in the control group, no allele was found to have a statistically significantly association with the patient group: TNF1 p = 0.89; TNF2 p = 0.89; IL-1Ra*1 p = 0.65; IL-1Ra*2 p = 0.68; IL-1Ra*3 p= 0. 50.

Conclusions: The results suggest that the polymorphic alleles of TNF-alpha and IL-1Ra studied play little or no part in the susceptibility to corneal melting among these patients with systemic vasculitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1723444PMC
http://dx.doi.org/10.1136/bjo.84.4.395DOI Listing

Publication Analysis

Top Keywords

tumour necrosis
8
necrosis factor
8
factor alpha
8
interleukin-1 receptor
8
receptor antagonist
8
corneal melting
8
systemic vasculitis
8
tnf-alpha promoter
8
promoter region
8
il-1ra gene
8

Similar Publications

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!