The aims of this study were to compare steroïdogenesis (progesterone, androstenedione and estradiol production) and response to LH and FSH challenge by whole perifused follicles 4 to 5.5 mm in diameter, obtained at different periods of the breeding season (onset, middle, end), during anestrus and the luteal phase. We have observed that all follicles do not have the same steroïdogenetic potential and do not respond with the same intensity to LH and FSH. At the middle of the breeding season, LH and FSH supplementation was ineffective in increasing progesterone secretion by follicles (0.19+/-0.05 vs. 0.20+/-0.03 ng/mL). In contrast, gonadotrophin challenge elicited significant (P<0.05) increases in androstenedione (0.94+/-0.34 vs. 0.35+/-0.09 ng/mL) and estradiol (120+/-11 vs. 49+/-10 pg/mL) production immediately after its administration. At the onset of the breeding season, steroidogenesis was identical under both basal and gonadotrophin-stimulated conditions unlike that in middle of the breeding season. However follicles were more sensitive to the gonadotrophin challenge in terms of estradiol production than those collected at the middle of the breeding season (220+/-45 vs. 120+/-11 pg/mL). Follicles obtained at the end of the breeding season featured higher progesterone (2.61+/-0.81 vs. 0.19+/-0.05 ng/mL; P<0.05) and lower estradiol production (10+/-3 vs. 49+/-10 pg/mL; P<0.05) that was not influenced by LH and FSH. Basal androstenedione secretion was comparable to that observed at the middle of the breeding season (0.42+/-0.10 vs. 0.35+/-0.09 ng/mL), but the response to stimulation was significantly higher (1.82+/-0.61 vs. 0.94+/-0.34 ng/mL; P<0.05). In anoestrus and the luteal phase, follicles presented higher progesterone and androstenedione and lower estradiol concentrations (P<0.05) compared with those obtained during the follicular phase at the middle of the breeding season. In the luteal phase, follicles remained capable of responding to LH-FSH challenge by increasing estradiol secretion (9+/-1 before and 21+/-6 pg/mL after LH-FSH; P<0.05). In contrast, in the luteal phase, estradiol production was not increased by LH-FSH challenge (7+/-2 vs. 12+/-4 pg/mL).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0093-691x(99)00010-2DOI Listing

Publication Analysis

Top Keywords

breeding season
8
effects season
4
season phase
4
phase estrous
4
estrous cycle
4
cycle steroidogenesis
4
steroidogenesis lh-fsh
4
lh-fsh sensitivity
4
sensitivity large
4
large ovine
4

Similar Publications

Melatonin, modulation of hypothalamic activity, and reproduction.

Vitam Horm

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information.

View Article and Find Full Text PDF

Timed artificial insemination (TAI) is a technology widely used in cattle production based on controlling ovarian follicular growth. This study analyzed a large database aiming to determine the influence of several intrinsic and extrinsic female factors, as well as their interactions to determine risk factors and produce prediction ability in beef cattle. A total of 1 832 999 TAIs conducted on 2 002 farms across South American countries were considered for the analysis, including 15 main fixed effects or interactions in the statistical model, in addition to five random effects.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

Haplotype Analysis and Gene Pyramiding for Pre-Harvest Sprouting Resistance in White-Grain Wheat.

Int J Mol Sci

January 2025

Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture/Key Laboratory for Wheat Germplasm Resources and Genetic Improvement in Henan Province, Zhengzhou 450002, China.

The Huanghuai winter wheat region, China's primary wheat-producing area, predominantly cultivates white-grained wheat. Pre-harvest sprouting (PHS) significantly impacts yield and quality, making the breeding of PHS-resistant varieties crucial for ensuring China's wheat production security. This study evaluated the PHS rate of 344 white-grained wheat varieties over two consecutive growing seasons (2022/2023 and 2023/2024).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!