Objective: To examine whether type II collagen cleavage by collagenase and loss of proteoglycan are excessive in human osteoarthritic (OA) articular cartilage compared with nonarthritic articular cartilage, and whether this can be inhibited by a selective synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1 [MMP-1]).

Methods: Articular cartilage samples were obtained during surgery from 11 patients with OA and at autopsy from 5 adults without arthritis. The articular cartilage samples were cultured in serum-free medium. A collagenase-generated neoepitope, which reflects cleavage of type II collagen, and proteoglycan glycosaminoglycan (GAG), which predominantly reflects aggrecan release, were assayed in culture media. In addition, cultures were performed using either of 2 synthetic MMP inhibitors, both of which inhibited collagenase 2 (MMP-8) and collagenase 3 (MMP-13), but one of which spared collagenase 1. Cultures were also biolabeled with 3H-proline in the presence and absence of these inhibitors to measure collagen synthesis (as tritiated hydroxyproline) and incorporation in articular cartilage.

Results: As a group, cleavage of type II collagen by collagenase was significantly increased in OA cartilage samples. In contrast, proteoglycan (GAG) release was not increased. This release of a collagenase-generated epitope was inhibited by both MMP inhibitors in 2 of 5 nonarthritic samples and in 9 of 11 OA cartilage samples. The inhibitor that spared collagenase 1 was generally more effective and inhibited release from 4 of 5 nonarthritic cartilage samples and the same OA cartilage samples. Group analyses revealed that the inhibition of collagenase neoepitope release by both inhibitors was significant in the OA patient cartilage, but not in the nonarthritic cartilage. Proteoglycan loss was unaffected by either inhibitor. Newly synthesized collagen (predominantly, type II) exhibited increased incorporation in OA cartilage, but only in the presence of the inhibitor that arrested collagenase 1 activity.

Conclusion: These results further indicate that the digestion of type II collagen by collagenase is selectively increased in OA cartilage, and that this can be inhibited in the majority of cases by a synthetic inhibitor that can inhibit collagenases 2 and 3, but not collagenase 1. The results also suggest that in OA, newly synthesized collagen is digested, but in a different manner than that of resident molecules. Proteoglycan release was not increased in OA cartilage and was unaffected by these inhibitors. Inhibitors of this kind may be of value in preventing damage to type II collagen in human arthritic articular cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8DOI Listing

Publication Analysis

Top Keywords

type collagen
24
cartilage samples
24
articular cartilage
20
cartilage
15
synthetic inhibitor
12
collagenase
12
increased cartilage
12
collagen
9
inhibitor spares
8
spares collagenase
8

Similar Publications

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

The increased cost and morbidity associated with diabetic foot ulcers (DFUs) place a substantial strain on the entire global healthcare system. In this trial, 24 subjects with a chronic DFU, Wagner grade 1 (University of Texas grade 1A), were treated with Standard of Care (SOC) therapy and randomized, one-half to receive advanced high-purity Type-I collagen-based skin substitute (HPTC; manufactured by Encoll Corp., Fremont, CA, USA), and the other half to receive a dehydrated human amnion/chorion membrane (dHACM) or viable cryopreserved human placental membrane (vCHPM).

View Article and Find Full Text PDF

High glucose affects the cardiac function of diabetic Akita mice by inhibiting cardiac ATP synthase beta subunit.

Int J Cardiol Cardiovasc Risk Prev

March 2025

Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.

Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.

Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.

View Article and Find Full Text PDF

Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!