Prolonged G(i/o) protein-coupled receptor activation has been shown to lead to receptor internalization and receptor desensitization. In addition, it is well established that although acute activation of these receptors leads to inhibition of adenylyl cyclase (AC), long-term activation results in increased AC activity (especially evident on removal of the inhibitory agonist), a phenomenon defined as AC superactivation or sensitization. Herein, we show that chronic exposure to agonists of G(i)-coupled receptors also leads to a decrease in cholate detergent solubility of G protein subunits, and that antagonist treatment after such chronic agonist exposure leads to a time-dependent reversal of the cholate insolubility. With Chinese hamster ovary and COS cells transfected with several G(i/o)-coupled receptors (i.e., mu- and kappa-opioid, and m(4)-muscarinic), we observed that although no overall change occurred in total content of G(alphai)- and beta(1)-subunits, chronic agonist treatment led to a marked reduction in the ability of 1% cholate to solubilize G(betagamma) as well as G(alphai). This solubility shift is exclusively observed with G(alphai), and was not seen with G(alphas). The disappearance and reappearance of G(alphai) and G(betagamma) subunits from and to the detergent-soluble fractions occur with similar time courses as observed for the onset and disappearance of AC superactivation. Lastly, pertussis toxin, which blocks acute and chronic agonist-induced AC inhibition and superactivation, also blocks the shift in detergent solubility. These results suggest a correlation between the solubility shift of the heterotrimeric G(i) protein and the generation of AC superactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.57.4.820 | DOI Listing |
BMC Plant Biol
January 2025
College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria.
Hypothesis: Solubilization is a fundamental process that underpins various technologies in the pharmaceutical and chemical industry. However, knowledge of the location, orientation and interactions of solubilized molecules in the micelles is still limited. We expect all-atom molecular dynamics simulations to improve the molecular-level understanding of solubilization and to enable its in silico prediction.
View Article and Find Full Text PDFChempluschem
January 2025
Kaiserslautern University of Technology: Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau, Chemistry, 67663, Kaiserslautern, GERMANY.
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Room 2421, Building 2, 1200 Cailun Road, 230032, Shanghai, CHINA.
Detergents are essential for preserving the structural integrity and functionality of membrane proteins (MPs) outside the biological membrane or in aqueous solution, and thus ensuring accurate biochemical and structural analyses. Here, we introduce peptide-scaffolded detergents, a novel class of hybrid molecules formed by preassembling detergent monomers with peptides of varying lengths, mediated via Click chemistry. These detergents are characterized by scalable, straightforward synthesis and enhanced solubility.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2025
Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!