Plasmodium falciparum merozoite membrane surface antigen 2 (MSA2) has been associated with the development of protective immunity against malaria. MSA2 antibodies were able to inhibit in vitro merozoite invasion. In our search for experimental evidence concerning the participation of MSA2 in merozoite invasion, 40 peptides were synthesized according to sequences reported for the CAMP and FC27 prototype Plasmodium strains. These peptides were purified, 125I-radiolabeled and tested for their ability to bind to erythrocytes. Two MSA2 synthetic peptides with high specific binding to human erythrocytes were found. The peptide coded 4044 (KNESKYSNTFINNAYNMSIR), located in the MSA2 N-terminal conserved region, has an affinity coefficient of 72 nM and showed a positive cooperativity for the receptor-ligand interaction. The other peptide, coded 4053 (NPNHKNAETNPKGKGEVQKP) and located in the central variable region of MSA2, has an affinity coefficient of 49nM and also showed a positive cooperativity for the receptor-ligand interaction. The binding capacity of these peptides is affected by erythrocytes treated with neuraminidase and trypsin, but it is not affected by chymotrypsin. Both of these sequences inhibit in vitro erythrocyte parasite invasion by up to 95% suggesting that they have an important role in the parasite's invasion process. Furthermore, as published previously [A. Saul et al. (1992) J. Immunol., 148, 208-211], a protective B epitope is included in the 4044 peptide sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1399-3011.2000.00174.xDOI Listing

Publication Analysis

Top Keywords

merozoite invasion
12
plasmodium falciparum
8
falciparum merozoite
8
inhibit vitro
8
peptide coded
8
affinity coefficient
8
positive cooperativity
8
cooperativity receptor-ligand
8
receptor-ligand interaction
8
msa2
6

Similar Publications

parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.

View Article and Find Full Text PDF

Human liver organoids are susceptible to Plasmodium vivax infection.

Malar J

December 2024

Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.

Background: The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • * Evidence shows that the invasion process involves manipulating RBC calcium signaling, particularly through the interaction between RH5 and basigin, which leads to increased cAMP and calcium influx in RBCs.
  • * The research highlights a conserved signaling pathway in host RBCs critical for parasite invasion and suggests new targets for therapeutic interventions against merozoite invasion.
View Article and Find Full Text PDF

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • PfRh5 has shown promise as a malaria vaccine candidate due to its key role in merozoite invasion and overall stability, with recent trials indicating its safety and effectiveness.
  • A study was conducted in Tanzanian regions known for high malaria transmission to assess genetic variation and immune responses to PfRh5 in asymptomatic carriers, revealing some new mutations but overall genetic conservation.
  • Results indicated variable immune response sensitivity tied to age, with the findings highlighting the importance of ongoing monitoring of vaccine efficacy and antigenic variation to improve malaria vaccine development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!