Background: To identify injured cells in the liver of patients with primary biliary cirrhosis (PBC) and to determine the effects of ursodeoxycholic acid (UDCA) on these cells, we examined the cellular expression of heat shock proteins (HSPs) in PBC both before and after treatment with UDCA.

Methods: Expression of HSP70 and ubiquitin in PBC livers (n=34) was evaluated immunohistochemically as well as by immunoblot analysis, and compared with chronic viral hepatitis type C (n= 9), primary sclerosing cholangitis (n=8), and controls (n=7).

Results: Immunoblot analysis demonstrated a marked expression of HSP70 and ubiquitin in PBC. Immunohistochemical staining for both HSP70 and ubiquitin was observed to be strong in biliary epithelial cells (BECs) and moderate in both hepatocytes and arteries in PBC. Cellular labelling rates for HSP70 and ubiquitin of bile ducts in PBC were significantly higher (p<0.01) than those in chronic viral hepatitis type C, primary sclerosing cholangitis, or controls. The labelling rates for HSP70 and ubiquitin in bile ducts and in hepatocytes were significantly decreased (p<0.01) after treatment with UDCA in PBC.

Conclusions: The present data suggest that BECs and hepatocytes significantly express HSPs even in the early stages of PBC, and that UDCA treatment significantly improves their condition. The immunohistochemical evaluation of HSPs is a valid and sensitive means to identify injured cells in PBC.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0676.2000.020001078.xDOI Listing

Publication Analysis

Top Keywords

hsp70 ubiquitin
16
ursodeoxycholic acid
8
expression heat
8
heat shock
8
shock proteins
8
primary biliary
8
biliary cirrhosis
8
expression hsp70
8
ubiquitin pbc
8
immunoblot analysis
8

Similar Publications

Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.

View Article and Find Full Text PDF

Cabozantinib Selectively Induces Proteasomal Degradation of p53 Somatic Mutant Y220C and Impedes Tumor Growth.

J Biol Chem

January 2025

Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:

Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.

View Article and Find Full Text PDF

Heat acclimation mediates cellular protection via HSP70 stabilization of HIF-1α protein in extreme environments.

Int J Biol Sci

January 2025

Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.

View Article and Find Full Text PDF

Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others.

View Article and Find Full Text PDF

Autophagy is a lysosome-dependent cellular degradation pathway that responds to a variety of environmental and cellular stresses, which is defective in aging and age-related diseases, therefore, targeting autophagy with small-molecule activators has potential therapeutic benefits. In this study, we successfully completed the first total synthesis of Ivesinol, an identified antibacterial natural product, and efficiently constructed a library of its analogs. To measure the effect of Ivesinol analogs on autophagic activity, we performed cell imaging-based screening approach, and observed that several Ivesinol analogs exhibited potent autophagy-regulating activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!