Inhalation drug delivery for both topical and systemic treatments has many advantages over oral, intravenous, or subcutaneous drug delivery. Because some drugs should be deposited within the bronchial tree and others should deposit within the respiratory zone of the lung, it should be possible to determine and influence the preferential site of drug deposition to develop efficient inhalation therapy strategies. In this article, a method that allows estimation of the longitudinal distribution of deposited particles in the lungs of individual subjects is introduced. From the photometrically measured deposition of monodisperse di-2-ethylhexyl sebacate (DEHS) droplets, the longitudinal distribution of deposited particles (i.e., the number of particles that are deposited in a certain lung volume element) can be assessed. In this study in four healthy volunteers the distribution of deposited particles was assessed for different airflow rates, tidal volumes (VTS), and particle sizes. The results showed that there are considerable differences in the longitudinal distribution of deposited particles between subjects and that the distribution is strongly dependent on particle size: if particle size is increased, the site of particle deposition is shifted proximally. Particles with diameters greater than approximately 5 microns cannot penetrate to a volumetric lung depth (VP) greater than approximately 600 cm3 even if the VT is increased. Airflow rate has a minor effect on the distribution of deposited particles, but if airflow rate increases, the site of particle deposition is slightly shifted peripherally. This method can be used to investigate individual patterns of drug deposition in human lungs noninvasively and to develop and optimize inhalation strategies for inhalation drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jam.1999.12.275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!