Diatoms and the ocean carbon cycle.

Protist

Published: March 1999

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1434-4610(99)70006-4DOI Listing

Publication Analysis

Top Keywords

diatoms ocean
4
ocean carbon
4
carbon cycle
4
diatoms
1
carbon
1
cycle
1

Similar Publications

While it is known that warming and rising CO level might interactively affect the long-term adaptation of marine diatoms, the molecular and physiological mechanisms underlying these interactions in the marine diatom Thalassiosira weissflogii on an evolutionary scale remain largely unexplored. In this study, we investigated the changes in metabolic pathways and physiological responses of T. weissflogii under long-term ocean acidification and/or warming conditions (∼3.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Dramatic effect of extreme rainfall event and storm on microbial community dynamics in a subtropical coastal region.

Sci Total Environ

January 2025

Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan. Electronic address:

Extreme weather events, such as heavy rainfall and typhoons, are becoming more frequent due to climate change and can significantly impact coastal microbial communities. This study examines the short-term alterations in microbial food webs-viruses, bacteria, picophytoplankton, nanoflagellates, ciliates, and diatom-following Typhoon Krathon in Taiwan's coastal waters in October 2024. Daily in situ sampling revealed a significant post-typhoon increased in viral, nanoflagellate, and Synechococcus spp.

View Article and Find Full Text PDF

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.

View Article and Find Full Text PDF

Metabarcoding reveals high species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters, a typical subtropical region.

Mar Pollut Bull

January 2025

Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, Hong Kong, China. Electronic address:

Chaetoceros, Pseudo-nitzschia, and Thalassiosira are ecologically important genera which formed blooms frequently in Hong Kong coastal waters in past decades. However, species identification based on microscopic observation for diatoms in these genera is difficult. In this study, we investigated species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters using metabarcoding approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!