Murine osteoclast precursors and osteoblasts express the integrin alpha(v)beta(5), the appearance of which on the cell surface is controlled by the beta(5), and not the alpha(v), subunit. Here, we show that a 173-base pair proximal region of the beta(5) promoter mediates beta(5) basal transcription in macrophage (osteoclast precursor)-like and osteoblast-like cells. DNase I footprinting reveal four regions (FP1-FP4) within the 173-base pair region, protected by macrophage nuclear extracts. In contrast, osteoblast nuclear extracts protect only FP1, FP2, and FP3. FP1, FP2, and FP3 bind Sp1 and Sp3 from both macrophage and osteoblast nuclear extracts. FP4 does not bind osteoblast proteins but binds PU.1 from macrophages. Transfection studies show that FP1 and FP2 Sp1/Sp3 sites act as enhancers in both MC3T3-E1 (osteoblast-like) and J774 (macrophage-like) cell lines, whereas the FP3 Sp1/Sp3 site serves as a silencer. Mutation of the FP2 Sp1/Sp3 site totally abolishes promoter activity in J774 cells, with only partial reduction in MC3T3-E1 cells. Finally, we demonstrate that PU.1 acts as a beta(5) silencer in J774 cells but plays no role in MC3T3-E1 cells. Thus, three Sp1/Sp3 sites regulate beta(5) gene expression in macrophages and osteoblast-like cells, with each element exhibiting cell-type and/or activation-suppression specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.12.8331DOI Listing

Publication Analysis

Top Keywords

nuclear extracts
12
fp1 fp2
12
regulate beta5
8
gene expression
8
expression macrophages
8
173-base pair
8
osteoblast-like cells
8
osteoblast nuclear
8
fp2 fp3
8
fp2 sp1/sp3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!