Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle.

IEEE Trans Biomed Eng

Worcester Polytechnic Institute, Biomedical Engineering Department, MA 01609, USA.

Published: February 2000

Over the past 40 years, researchers from a variety of scientific backgrounds have been using Rush's equations to analyze results of their electrophysiological studies. A lack of understanding of the constraints and the domain in which these equations are valid, often results in situations in which it is challenging to evaluate and compare results obtained by different investigators. In this paper, we reanalyzed the conditions for which Rush's equations were derived, and using mathematical modeling, computer simulation and in vitro measurements, we delineated areas of their appropriate application. Our studies showed that both sample geometry and test electrode configuration affect the measured tissue electrical resistivities: 1) The sample can be considered semi-infinite only if its dimensions are > 50 inter-electrode separation distances (IESD), and thickness > 2.5 IESD, 2) smaller sample sizes increase the transversally measured resistivity, 3) semi-infinite samples thinner than 2.5 IESD, and samples tested with needle electrodes demonstrate reduced anisotropy, and 4) when surface-spot electrodes are longitudinally aligned, as the IESD/tissue thickness ratio decreases, the measured resistivity increases. Our conclusion is that in most experimental situations, it is necessary to use modeling techniques to decouple the electrode configuration/sample geometry influence from the measured tissue resistivity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/10.821749DOI Listing

Publication Analysis

Top Keywords

sample geometry
8
electrode configuration
8
rush's equations
8
measured tissue
8
measured resistivity
8
measured
5
effects sample
4
geometry electrode
4
configuration measured
4
measured electrical
4

Similar Publications

Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used.

View Article and Find Full Text PDF

In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.

View Article and Find Full Text PDF

This paper introduces an interferometer for single-shot areal quantitative phase imaging at two wavelengths simultaneously, suitable for use with low coherence sources. It operates in reflection geometry with on-axis illumination, so that it can be conveniently applied to surface texture measurements. The system consists of two identical 4f systems forming the reference and sample arm.

View Article and Find Full Text PDF

Due to their advantages of compact geometries and lightweight, diffractive optical elements (DOEs) are attractive in various applications such as sensing, imaging and holographic display. When designing DOEs based on algorithms, a diffraction model is required to trace the diffracted light propagation and to predict the performance. To have more precise diffraction field tracing and optical performance simulation, different diffraction models have been proposed and developed.

View Article and Find Full Text PDF

High-quality light-field generation of real scenes based on view synthesis remains a significant challenge in three-dimensional (3D) light-field displays. Recent advances in neural radiance fields have greatly enhanced light-field generation. However, challenges persist in synthesizing high-quality cylindrical viewpoints within a short time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!