Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry.

J Chem Neuroanat

European Graduate School of Neuroscience (EURON), University of Liège, Laboratory of Biochemistry Research Group in Behavioral Neuroendocrinology, 17 Place Delcour, B-4020, Liège, Belgium.

Published: March 2000

The telencephalic nucleus HVc (sometimes referred to as the high vocal center) plays a key role in the production and perception of birdsong. Although many afferent and efferent connections to this nucleus have been described, it has been clear for many years, based on chemical neuroanatomical criteria, that there are projections to this nucleus that remain undescribed. A variety of methods including high performance liquid chromatography, immunohistochemistry and receptor autoradiography have identified high levels of catecholamine transmitters, the presence of enzymes involved in the synthesis of catecholamines such as tyrosine hydroxylase and a variety of catecholamine receptor sub-types in the HVc of several songbird species. However, no definitive projections to HVc have been described from cells groups known to synthesize catecholamines. These projections were analyzed in the present study by retrograde tract tracing combined with immunocytochemistry for tyrosine hydroxylase. The origin of the catecholaminergic inputs to HVc were determined based exclusively on birds in which injections of the retrograde tracer (latex fluospheres) were confined within the cytoarchitectonic boundaries of the nucleus. Retrogradely transported latex fluospheres were found mainly in cells of two dopaminergic nuclei, the mesencephalic central gray (A11) and, to a lesser extend, the area ventralis of Tsai (A10; homologous to the ventral tegmental area of mammals). A few retrogradely-labelled cells were also found in the noradrenergic nucleus subceruleus (A6). Most of these retrogradely-labelled cells were also tyrosine hydroxylase-positive. Other catecholaminergic nuclei were devoid of retrograde label. These data converge with others studies to indicate that HVc receives discrete dopaminergic and noradrenergic inputs. These inputs may influence the steroid regulation of HVc, attentional processes related to song and modulate sensory inputs to the song system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-0618(99)00054-xDOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
12
origin catecholaminergic
8
catecholaminergic inputs
8
inputs hvc
8
retrograde tract
8
tract tracing
8
tracing combined
8
latex fluospheres
8
retrogradely-labelled cells
8
hvc
7

Similar Publications

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

Olanzapine exposure disordered lipid metabolism, gut microbiota and behavior in zebrafish (Danio rerio).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:

Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.

View Article and Find Full Text PDF

Coexistence of phenylketonuria and tyrosinemia type 3: challenges in the dietary management.

J Pediatr Endocrinol Metab

January 2025

Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.

Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).

View Article and Find Full Text PDF

Background: In recent decades, epidemiological and experimental studies have looked into the role of pesticides, particularly the herbicide paraquat, in the development of Parkinson's disease. Horseradish tree (Moringa oleifera) is an ethnobotanical plant with lots of therapeutic potential, but there is a dearth of information on the bioactive properties of the seed alkaloid extracts.

Method: This study examined the modulatory effects of various concentrations of an alkaloid extract from the seeds of Horseradish Tree (Moringa oleifera) on the survival rate of flies exposed to paraquat, as well as certain biochemical and molecular markers related to Parkinson's disease in the heads of the flies.

View Article and Find Full Text PDF

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!