Blocking and suppressing mechanisms of chemoprevention by dietary constituents.

Toxicol Lett

MRC Toxicology Unit, CMHT Hodgkin Building, University of Leicester, Lancaster Road, PO Box 138, Leicester, UK.

Published: March 2000

Many dietary constituents are chemopreventive in animal models, and experiments with cultured cells are revealing various potential mechanisms of action. Compounds classified as blocking agents can prevent, or greatly reduce, initiation of carcinogenesis, while suppressing agents affect later stages of the process by reducing cell proliferation. Many compounds have both types of activity. Blocking mechanisms include alteration of drug metabolising activities and scavenging of reactive oxygen species. Mechanisms which suppress tumorigenesis often involve modulation of signal transduction pathways, leading to altered gene expression, cell cycle arrest or apoptosis. As our knowledge of how these dietary components affect cell biochemistry improves, so the likelihood of success in chemoprevention trials and in provision of dietary advice to the general population to optimise the chances of preventing disease is increased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-4274(99)00211-8DOI Listing

Publication Analysis

Top Keywords

dietary constituents
8
blocking suppressing
4
mechanisms
4
suppressing mechanisms
4
mechanisms chemoprevention
4
dietary
4
chemoprevention dietary
4
constituents dietary
4
constituents chemopreventive
4
chemopreventive animal
4

Similar Publications

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

A water extract of the Ayurvedic plant (L.) Urban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and Alzheimer's disease and affects dendritic arborization, mitochondrial activity, and oxidative stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA) are constituents associated with these bioactivities of CAW, although little is known about how interactions between these compounds contribute to the plant's therapeutic benefit.

View Article and Find Full Text PDF

Beneficial activities of phenolic compounds in the gastrointestinal tract, such as antiradical activity, are affected by the food matrix. The aim of this study was to investigate the influence of one constituent of the food matrix (dietary fiber β-glucan) on the release and antiradical activity of phenolic compounds from apples in gastrointestinal digestion. Simulated digestion in vitro was conducted on whole apples without or with added β-glucan.

View Article and Find Full Text PDF

Botanicals have long been used to promote health and treat diseases, but the safety of many currently marketed botanicals has not been adequately evaluated. Given the chemical complexity of botanicals, which often contain numerous unknown constituents, and their widespread use, comprehensive toxicity assessments are needed. The Botanical Safety Consortium was established to address this challenge.

View Article and Find Full Text PDF

Acanthopanax seeds polysaccharide improve alcoholic fatty liver disease through the gut-liver axis.

Int J Biol Macromol

January 2025

College of Agriculture, Yanbian University, Jilin Province, Yanji 133002, China. Electronic address:

Naturally derived polysaccharides regulate gut microbiota structure via the gut-liver axis to ameliorate Alcoholic fatty liver disease (AFLD). Acanthopanax seeds are abundant in polysaccharides; however, whether Acanthopanax seed polysaccharides (ASP) improve AFLD through the gut-liver axis remains unclear. In this study, ASP was extracted using ultrasonic-assisted extraction, followed by structural characterization and monosaccharide composition analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!