Sleep apnea and associated daytime sleepiness and fatigue are common manifestations of mainly obese middle-aged men. The onset of sleep apnea peaks in middle age, and its morbid and mortal sequelae include complications from accidents and cardiovascular events. The pathophysiology of sleep apnea remains obscure. The purpose of this study was to test three separate, albeit closely related, hypotheses. 1) Does sleep apnea contribute to the previously reported changes of plasma cytokine (tumor necrosis factor-alpha and interleukin-6) and leptin levels independently of obesity? 2) Among obese patients, is it generalized or visceral obesity that predisposes to sleep apnea? 3) Is apnea a factor independent from obesity in the development of insulin resistance? Obese middle-aged men with sleep apnea were first compared with nonapneic age- and body mass index (BMI)-matched obese and age-matched lean men. All subjects were monitored in the sleep laboratory for 4 consecutive nights. We obtained simultaneous indexes of sleep, sleep stages, and sleep apnea, including apnea/hypopnea index and percent minimum oxygen saturation. The sleep apneic men had higher plasma concentrations of the adipose tissue-derived hormone, leptin, and of the inflammatory, fatigue-causing, and insulin resistance-producing cytokines tumor necrosis factor-alpha and interleukin-6 than nonapneic obese men, who had intermediate values, or lean men, who had the lowest values. Because these findings suggested that sleep apneics might have a higher degree of insulin resistance than the BMI-matched controls, we studied groups of sleep-apneic obese and age- and BMI-matched nonapneic controls in whom we obtained computed tomographic scan measures of total, sc, and visceral abdominal fat, and additional biochemical indexes of insulin resistance, including fasting plasma glucose and insulin. The sleep apnea patients had a significantly greater amount of visceral fat compared to obese controls (<0.05) and indexes of sleep disordered breathing were positively correlated with visceral fat, but not with BMI or total or sc fat. Furthermore, the biochemical data confirmed a higher degree of insulin resistance in the group of apneics than in BMI-matched nonapneic controls. We conclude that there is a strong independent association among sleep apnea, visceral obesity, insulin resistance and hypercytokinemia, which may contribute to the pathological manifestations and somatic sequelae of this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jcem.85.3.6484DOI Listing

Publication Analysis

Top Keywords

sleep apnea
32
sleep
14
insulin resistance
12
daytime sleepiness
8
sleepiness fatigue
8
visceral obesity
8
apnea
8
obese middle-aged
8
middle-aged men
8
tumor necrosis
8

Similar Publications

Objectives: This non-randomised clinical study aimed to identify the phenotypic characteristics that distinguish responders from non-responders. Additionally, it sought to establish a predictive model for treatment response to obstructive sleep apnoea (OSA) using mandibular advancement devices (MAD), based on the analysed phenotypic characteristics.

Material And Methods: This study, registered under identifier NCT05596825, prospectively analysed MAD treatment over 6 years using two-piece adjustable appliances according to a standardised protocol.

View Article and Find Full Text PDF

Purpose: Obstructive sleep apnea (OSA) affects up to 936 million adults globally and is linked to significant health risks, including neurocognitive impairment, cardiovascular diseases, and metabolic conditions. Despite its prevalence, OSA remains largely underdiagnosed. This study aimed to enhance OSA awareness and risk assessment using the STOP-Bang questionnaire in a telemedicine format.

View Article and Find Full Text PDF

Introduction: Insomnia and sleep apnea (SA) can have adverse effects on operating aircraft. This study examined trends in insomnia and SA incidence rates in U.S.

View Article and Find Full Text PDF

: Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder characterized by intermittent upper airway obstruction, leading to significant health consequences. Traditional diagnostic methods, such as polysomnography, are time-consuming and resource-intensive. : This study explores the potential of proton-transfer-reaction mass spectrometry (PTR-MS) in identifying volatile organic compound (VOC) biomarkers for the non-invasive detection of OSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!