Electrical impedance tomography is a technology for producing images of internal body structures based upon electrical measurements made from electrodes on the body surface. Typically a single plane of electrodes is used, seeking to reconstruct a cross section of the body. Yet the majority of image reconstruction algorithms ignore the three-dimensional (3D) characteristics of the current flow in the body. Actually, a substantial amount of current flows out of the electrode plane, creating distortions in the resulting images. This paper describes a reconstruction algorithm, ToDLeR, for solving a linearized 3D inverse problem in impedance imaging. The algorithm models the body as a homogeneous cylinder and accounts for the 3D current flow in the body by analytically solving for the current flow from one or more layers of electrodes on the surface of the cylinder. The algorithm was implemented on the ACT3 real-time imaging system and data were collected from a 3D test phantom using one, two and four layers of electrodes. By using multiple planes of electrodes, improved accuracy in any particular electrode plane was obtained, with decreased sensitivity to out-of-plane objects. A cylindrical target located vertically more than 8 cm below a single layer of 16 electrodes, and positioned radially midway between the centre and the boundary, produced an image that had 35% of the value obtained when the target was in the electrode plane. By adding an additional layer of 16 electrodes below the first electrode plane, and using 3D current patterns, this artefact was reduced to less than 10% of the peak value. We conclude that the 3D algorithm, used with multiple planes of electrodes, reduces the distortions from out-of-plane structures in the body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0967-3334/21/1/303 | DOI Listing |
Small
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.
View Article and Find Full Text PDFNat Commun
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, University College London, London, WC1E 7JE, UK.
Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China. Electronic address:
Developing high-performance and low-cost electrodes for hydrogen and oxygen evolution reactions (HER and OER, respectively) represents a pivotal challenge in the field of water electrolysis. Herein, W doped NiFe LDH nanosheets (NiFe-W/NF) were immobilized on nickel foam (NF) through one-step corrosion engineering, which induced the coexistence of α-Ni(OH) and β-Ni(OH). The doping of large atomic radius W influenced the growth of crystal planes of Ni(OH), promoting the formation of α-Ni(OH), which results in large layer spaces and neatly arranged nanosheets structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!