Reductive metabolism of halothane in phenobarbital-pretreated rats is known to increase free radical formation that results in hepatotoxicity. It also is associated with a marked induction of microsomal heme oxygenase-1 (HO-1), suggesting that there is an alteration in heme metabolism. In this study, we examined heme metabolism in rats pretreated with phenobarbital, followed by exposure to halothane-hypoxia. In this model, there was a significant decrease in microsomal cytochrome P450 content in the liver, followed by a rapid increase in free heme concentration and a decrease in the level of mRNA for the nonspecific delta-aminolevulinate synthase. A transient but dramatic induction of HO-1 mRNA and a prolonged induction of heat shock protein 70 mRNA also occurred. The HO-1 protein was detected principally in the hepatocytes around the central vein. Serum alanine transaminase (ALT) activity, an indicator of hepatic dysfunction, increased continuously throughout the experiment. Hemin pretreatment induced hepatic HO-1 with abrogation of the halothane-induced hepatotoxicity in this model, as judged by ALT activity and normal histology. Our findings in this study thus indicate that halothane-induced hepatotoxicity is due not only to its reductive metabolite formation, but also to an increase in hepatic free heme concentration, which is a potent prooxidant; HO-1 induction is an important protective response against such changes. This is also the first study to demonstrate that hemin pretreatment, which induces HO-1 prior to exposure to halothane, effectively prevents halothane-induced hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(99)00386-x | DOI Listing |
Hepatology
July 2023
Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Hepatology
August 2015
Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
Iran Red Crescent Med J
September 2014
Department of Molecular Hepatology, Middle East Liver Disease Center, Tehran, IR Iran ; Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran.
Toxicology
May 2014
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Drug Safety Sciences, Nagoya University School of Medicine, Nagoya 466-8550, Japan. Electronic address:
Hepat Mon
January 2011
Department of Gastroenterology, Tehran University of Medical Sciences, Tehran, IR Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!